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Welcome to the main documentation of Machin library.
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CHAPTER

ONE

ABOUT

1.1 About

Machin is a reinforcement library purely based on pytorch, it is designed with three things in mind:

1. Easy to understand.

2. Easy to extend.

3. Easy to reuse.

The first goal is achieved through clear structure design, robust document, and concise description of use cases. The
second goal is achieved through adding an extra layer upon basic apis provided in the distributed module of pytorch,
this layer offers additional fault tolerance mechanism and eliminates hassles occurring in distributed programming.
The last goal is the result of modular designs, careful api arrangements, and experiences gathered from other similar
projects.

Compared to other versatile and powerful reinforcement learning frameworks, Machin tries to offer a pleasant pro-
gramming experience, smoothing out as many obstacles involved in reinforcement learning and distributed program-
ming as possible. Some essential functions such as automated tuning and neural architecture search are not offered in
this package, we strongly recommend you take a look at these amazing projects and take a piggyback ride:

• ray tune

• tpot

• nni
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CHAPTER

TWO

INSTALLATION

Machin is hosted on PyPI, currently it requires:

1. python >= 3.5

2. torch >= 1.5.0

If you are using PIP to manage your python packages, you may directly type:

pip install machin

If you are using conda to manage your python packages, you are suggested to create a virtual environment first, to
prevent PIP changes your packages without letting conda know:

conda create -n some_env pip
conda activate some_env
pip install machin
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CHAPTER

THREE

TUTORIALS AND EXAMPLES

3.1 Tutorials

3.1.1 Your first program

Author: Muhan Li

Full code: Github

This tutorial will guide you to create your first Deep Q Learning (DQN) agent on the CartPole-v0 task. from the
OpenAI Gym.

Preface

Some sections of this tutorial are copied and adapted from the Reinforcement Learning (DQN) Tutorial , written by
Author: Adam Paszke, credits attributed to him.

Task

The agent has to decide between two actions - moving the cart left or right - so that the pole attached to it stays upright.
You can find an official leaderboard with various algorithms and visualizations at the Gym website.

Fig. 3.1: cartpole

As the agent observes the current state of the environment and chooses an action, the environment transitions to a new
state, and also returns a reward that indicates the consequences of the action. In this task, rewards are +1 for every
incremental timestep and the environment terminates if the pole falls over too far or the cart moves more then 2.4 units
away from center. This means better performing scenarios will run for longer duration, accumulating larger return.

The CartPole task is designed so that the inputs to the agent are 4 real values representing the environment state
(position, velocity, etc.). However, neural networks can solve the task purely by looking at the scene, so we’ll use a
patch of the screen centered on the cart as an input. Because of this, our results aren’t directly comparable to the ones
from the official leaderboard - our task is much harder. Unfortunately this does slow down the training, because we
have to render all the frames.

Strictly speaking, we will present the state as the difference between the current screen patch and the previous one.
This will allow the agent to take the velocity of the pole into account from one image.
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https://github.com/iffiX
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A theoretical explanation of DQN

Our environment is deterministic, so all equations presented here are also formulated deterministically for the sake of
simplicity. In the reinforcement learning literature, they would also contain expectations over stochastic transitions in
the environment.

Our aim will be to train a policy that tries to maximize the discounted, cumulative reward 𝑅𝑡0 =
∑︀∞

𝑡=𝑡0
𝛾𝑡−𝑡0𝑟𝑡,

where 𝑅𝑡0 is also known as the return. The discount, 𝛾, should be a constant between 0 and 1 that ensures the sum
converges. It makes rewards from the uncertain far future less important for our agent than the ones in the near future
that it can be fairly confident about.

The main idea behind Q-learning is that if we had a function 𝑄* : 𝑆𝑡𝑎𝑡𝑒 × 𝐴𝑐𝑡𝑖𝑜𝑛 → R, that could tell us what our
return would be, if we were to take an action in a given state, then we could easily construct a policy that maximizes
our rewards:

𝜋*(𝑠) = argmax
𝑎

𝑄*(𝑠, 𝑎)

However, we don’t know everything about the world, so we don’t have access to 𝑄*. But, since neural networks are
universal function approximators, we can simply create one and train it to resemble 𝑄*.

For our training update rule, we’ll use a fact that every 𝑄 function for some policy obeys the Bellman equation:

𝑄𝜋(𝑠, 𝑎) = 𝑟 + 𝛾𝑄𝜋(𝑠′, 𝜋(𝑠′))

The difference between the two sides of the equality is known as the temporal difference error, 𝛿:

𝛿 = 𝑄(𝑠, 𝑎) − (𝑟 + 𝛾 max
𝑎

𝑄(𝑠′, 𝑎))

To minimise this error, we will use the common MSE loss.

DQN framework

The DQN framework is defined in machin.frame.algorithms.dqn, you may import it with the following
statements:

from machin.frame.algorithms import DQN
# Or with the following statement
from machin.frame.algorithms.dqn import DQN

DQN framework is one of the three major types of model-free reinforcement methods supported by Machin. To
initialize it, you must at least provide a Q network, a target Q network, an optimizer used to optimize the first Q
network, and a criterion used to determine distance between the estimated Q value and the target Q value we would
like to reach:

def __init__(self,
qnet: Union[NeuralNetworkModule, nn.Module],
qnet_target: Union[NeuralNetworkModule, nn.Module],
optimizer: Callable,
criterion: Callable,

*_,
lr_scheduler: Callable = None,
lr_scheduler_args: Tuple[Tuple] = None,
lr_scheduler_kwargs: Tuple[Dict] = None,
batch_size: int = 100,
update_rate: float = 0.005,
learning_rate: float = 0.001,

(continues on next page)

8 Chapter 3. Tutorials and examples



Machin, Release 0.3.4

(continued from previous page)

discount: float = 0.99,
gradient_max: float = np.inf,
replay_size: int = 500000,
replay_device: Union[str, t.device] = "cpu",
replay_buffer: Buffer = None,
mode: str = "double",
visualize: bool = False,
visualize_dir: str = "",

**__):...

Your Q network

DQN framework supports multiple mode s, the mode parameter could be one of “vanilla”, “fixed_target” or “double”,
for more detailed explanations on these mode s, please refer to DQN .

Depending on the Q framework mode, your network configurations might be a little different, by generally speaking,
your Q network should accept a state, and then output estimated Q values for each action. A simple example would
be:

class QNet(nn.Module):
def __init__(self, state_dim, action_num):

super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, some_state):
a = t.relu(self.fc1(some_state))
a = t.relu(self.fc2(a))
return self.fc3(a)

Please take care of the function signature of forward, because the name of its arguments will be examined when the
DQN framework tries to perform a forward operation on your Q network, during training or inference.

Now, please remember the name of the state argument: “some_state”.

Optimizer and criterion

In order to optimize your model, you must specify an optimizer and a criterion. Usually the optimizer is torch.
optim.Adam. We are going to use the good old MSE loss nn.MSELoss here.

We have all the ingredients required to start the ignition sequence of the DQN framework, lets mix these parts together:

q_net = QNet(observe_dim, action_num)
q_net_t = QNet(c.observe_dim, c.action_num)
dqn = DQN(q_net, q_net_t,

t.optim.Adam,
nn.MSELoss(reduction='sum'))

The framework might will print two warnings for not setting the input/output device of Q networks, but lets ignore
that for now. You may quite Machin down either by:

3.1. Tutorials 9
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# to mark the input/output device Manually
# will not work if you move your model to other devices
# after wrapping

q_net = static_module_wrapper(q_net, "cpu", "cpu")
q_net_t = static_module_wrapper(q_net_t, "cpu", "cpu")

Or by:

# to mark the input/output device Automatically
# will not work if you model locates on multiple devices

q_net = dynamic_module_wrapper(q_net)
q_net_t = dynamic_module_wrapper(q_net_t)

static_module_wrapper and dynamic_module_wrapper can be imported from machin.model.nets

Store a step

The DQN framework has encapsulated a replay buffer inside, in order to interact with the internal replay buffer, you
may use either one of the following APIs, according to your needs:

dqn.store_transition(transition: Union[Transition, Dict])
dqn.store_episode(episode: List[Union[Transition, Dict]])

store_transition stores a single transition step in your MDP process, while store_episode stores all tran-
sitions inside a MDP process.

When you are using other frameworks, these two APIs may both be supported, or only one of them is supported,
depending on the internal implementations of frameworks, and requirements of algorithms.

Now lets take DQN as an example, each Transition object describes a single step of a MDP process, and consti-
tutes of 5 attributes:

1. state: State observed by your agent when transition begins.

2. action: Action taken by your agent in this transition step.

3. next_state: Next state observed by your agent, when action is taken.

4. reward: Incremental reward given to your agent, due to the taken action.

5. terminal: Whether the next state is the terminal state of current MDP.

Suppose the observation dimension of your agent is 5, contiguous, within range (−∞,+∞), and total number of
available discreet actions is 3, then an example transition step would be:

# some states observed by your agent
old_state = state = t.zeros([1, 5])

# suppose action taken by your agent is 2, available actions are 0, 1, 2
action = t.full([1, 1], 2, dtype=t.int)

dqn.store_transition({
"state": {"some_state": old_state},
"action": {"action": action},
"next_state": {"some_state": state},
"reward": 0.1,

(continues on next page)
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(continued from previous page)

"terminal": False
})

Please take note that the sub key of attribute “state” and “next_state” must match the name of the state argument
“some_state” in your Q network mentioned above. And the sub key of attribute “action” must be “action”.

We will come back to this seemingly strange name requirement in the Buffer section of Data flow in machin. For now,
please make sure that shapes and dictionary keys of your tensors are exactly the same as the example.

Update

It is very easy to perform an update step, just call:

dqn.update()

on the framework instance you have just created.

Full training setup

With all the necessary parts, we can construct a full training program now:

from machin.frame.algorithms import DQN
from machin.utils.logging import default_logger as logger
import torch as t
import torch.nn as nn
import gym

# configurations
env = gym.make("CartPole-v0")
observe_dim = 4
action_num = 2
max_episodes = 1000
max_steps = 200
solved_reward = 190
solved_repeat = 5

# model definition
class QNet(nn.Module):

def __init__(self, state_dim, action_num):
super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, some_state):
a = t.relu(self.fc1(some_state))
a = t.relu(self.fc2(a))
return self.fc3(a)

if __name__ == "__main__":
q_net = QNet(observe_dim, action_num)

(continues on next page)
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(continued from previous page)

q_net_t = QNet(observe_dim, action_num)
dqn = DQN(q_net, q_net_t,

t.optim.Adam,
nn.MSELoss(reduction='sum'))

episode, step, reward_fulfilled = 0, 0, 0
smoothed_total_reward = 0
terminal = False

while episode < max_episodes:
episode += 1
total_reward = 0
terminal = False
step = 0
state = t.tensor(env.reset(), dtype=t.float32).view(1, observe_dim)

while not terminal and step <= max_steps:
step += 1
with t.no_grad():

old_state = state
# agent model inference
action = dqn.act_discrete_with_noise(

{"some_state": old_state}
)
state, reward, terminal, _ = env.step(action.item())
state = t.tensor(state, dtype=t.float32).view(1, observe_dim)
total_reward += reward

dqn.store_transition({
"state": {"some_state": old_state},
"action": {"action": action},
"next_state": {"some_state": state},
"reward": reward,
"terminal": terminal or step == max_steps

})

# update, update more if episode is longer, else less
if episode > 100:

for _ in range(step):
dqn.update()

# show reward
smoothed_total_reward = (smoothed_total_reward * 0.9 +

total_reward * 0.1)
logger.info("Episode {} total reward={:.2f}"

.format(episode, smoothed_total_reward))

if smoothed_total_reward > solved_reward:
reward_fulfilled += 1
if reward_fulfilled >= solved_repeat:

logger.info("Environment solved!")
exit(0)

else:
reward_fulfilled = 0

And your Q network should will be successfully trained within about 300 episodes:

12 Chapter 3. Tutorials and examples
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[2020-07-26 22:45:53,764] <INFO>:default_logger:Episode 226 total reward=188.18
[2020-07-26 22:45:54,405] <INFO>:default_logger:Episode 227 total reward=189.36
[2020-07-26 22:45:55,091] <INFO>:default_logger:Episode 228 total reward=190.42
[2020-07-26 22:45:55,729] <INFO>:default_logger:Episode 229 total reward=191.38
[2020-07-26 22:45:56,372] <INFO>:default_logger:Episode 230 total reward=192.24
[2020-07-26 22:45:57,012] <INFO>:default_logger:Episode 231 total reward=193.02
[2020-07-26 22:45:57,658] <INFO>:default_logger:Episode 232 total reward=193.72
[2020-07-26 22:45:57,658] <INFO>:default_logger:Environment solved!

3.1.2 Data flow in machin

Author: Muhan Li

Data flow is the major thing you should be very careful with while using the Machin library. Especially:

1. Data types

2. Tensor shapes

3. How to correctly store transitions.

4. How to correctly update your model.

If you are using the distributed algorithms, such as A3C, IMPALA, etc. You should additionally take care of:

5. How to setup the distributed world correctly.

6. How to setup the distributed framework correctly.

7. How to perform synchronization, pass data, between processes.

In this tutorial, we are not going to cover the distributed part, and will focus on the data flow in single agent RL
algorithms.

The big picture

To give you a general idea of the data flow model in single agent RL algorithms, we will take the DQN framework as
an example and use a diagram to illustrate everything:

Fig. 3.2: Data flow in DQN

There are mainly three types of arrows in the diagram:

1. The normal grey arrow: Represents data passed to functions by arguments, keyword
arguments, etc. And data returned by functions.

2. The dashed gray arrow: The dashed gray arrow between the Q network and the target
Q network means “soft_update”, which updates the parameters of the target Q network
by interpolating target Q and online Q.

3. The circle gray arrows: There are two circled gray arrows:

N_State —() QNet_target
State —() QNet

These two circle gray arrows are special network calls named “safe_call”, “safe_call”

3.1. Tutorials 13
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is an enhanced keyword-argument-like caller, it will inspect arguments of the “forward”
function of your network, and fillin sub-keys of major attributes like action,
state, next_state from the batched sample. What major attributes are going to
be used by “safe_call” depends on the used RL framework and the model.

If sub-keys defined in major attributes are present in arguments of the “forward” function.
then the corresponding sub-values will be used. Otherwise they would be ignored.

“safe_call” will also inspect the input/output device of your model, or try to automatically
determine them, if they are not specified. Therefore, the tensors stored as sub-values of
these major attributes could be correctly moved to the target device.

Dive deeper

So what is happening under the hood exactly? How do we pass the observations and actions to the framework, then
expect it to perform some magical operation and train our models behind the scenes? In this section, we are going to
cover all of these questions in the following order, this order is also the direction of our data flow:

Transition -> Buffer -> Algorithm

Transition

Now let’s take a step back and reexamine the process of a MDP (Markov Decision Process). A MDP process could be
described as a chain of transition steps.

Fig. 3.3: MDP (Markov Decision Process)

In Machin, we store each transition step as a TransitionBase object, this class manages all data of a user defined
transition step, by categorizing data into three types: major attribute, sub attribute and custom attribute.

1. Major attribute: Dict[str, t.Tensor], used to describe complex state and action information.

2. Sub attributes: Union[Scalar, t.Tensor], used to store less complex states such as reward, terminal
status, etc.

3. Custom attributes: Any, used to store custom data structures describing environmental specific states, must not
have tensors inside.

the default transition implementation is Transition, which have 5 attributes:

1. state (major attribute)

2. action (major attribute)

3. next_state (major attribute)

4. reward (sub attribute)

5. terminal (sub attribute)

Note:: The first dimension of tensors stored in major attributes and sub attributes must mean batch size (Scalar sub
attributes are safe). Currently, the constructor of the default transition implementation Transition requires batch
size to be 1, all algorithms are only tested and validated with batch size equals to 1. Scalar type custom attributes, like
reward and terminal, will be considered as a tensor with shape [1, 1].

Now that we have a very general transition data structure, which supports storing:

14 Chapter 3. Tutorials and examples
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1. complex state information, such as visual(RGB-D), audio, physical(position, velocity, etc.), internal states of
recurrent networks, etc.

2. complex action information, whether discreet or contiguous, single space or a combination of multitude of
spaces, by storing them in different keys of the dictionary.

3. complex reward, whether scalar reward or vectorized reward.

We may use this class to store the transition steps of a full MDP. Transition can be constructed like:

old_state = state = t.zeros([1, 5])
action = t.zeros([1, 2])
transition = {

"state": {"state": old_state},
"action": {"action": action},
"next_state": {"state": state},
"reward": 1.0,
"terminal": False

}
transition = Transition(**transition)

During Transition instance initialization, tensors stored in major and sub attributes will be cloned then detached,
custom attributes will be deep copied.

Transition also supports Transition.to() method to move internal tensors to the target pytorch device.

Buffer

Buffers (replay memory) is one of the core parts of the Machin library. Machin provides a sophisticated but clear
implementation of replay memory, to accommodate the needs of different frameworks. In The big picture section,
we have showed that the buffer instance encapsulated in the DQN framework has two major APIs: “append” and
“sample”,

Append

Append is encapsulated by every framework, in their “store_*” APIs, some frameworks might will add new attributes
to the constructed transition object in there “store_*” APIs, then call the “append” API of the buffer to add one or
more transition objects to the buffer.

There are multiple buffer implementations, the basic Buffer class implements a simple ring buffer.
PrioritizedBuffer extends on the the basic Buffer class with a prioritized weight tree. Distributed buffers
are more interesting and complex because data are distributed on all process members.

In conclusion, the “append” API just stores one or more transition objects into the buffer, there are many internal
events happening behind the scenes, and you need not worry about them.

3.1. Tutorials 15
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Sample

Sampling is the first step performed in almost every frameworks, it may look like:

batch_size, (state, action, reward, next_state, terminal, others) = \
self.replay_buffer.sample_batch(self.batch_size,

concatenate_samples,
sample_method="random_unique",
sample_attrs=[

"state", "action",
"reward", "next_state",
"terminal", "*"

])

What secret actions does this segment of code perform internally? Well, nothing other than “sampling” and “con-
catenation”. Argument sample_method indicates the sample selection method, sample_attrs indicates which
attributes of each sample we are going to acquire, “*” is a wildcard selector picking up all unspecified attributes.

Then what does “concatenation” mean? To put it simply, it will only affect “major attributes” and “sub attributes” of
each sample, if you have specified additional_concat_attrs, then custom attributes can also be concatenated
into a tensor. We may use a graph to explain this process happening in the basic Buffer class:

Fig. 3.4: Buffer sampling & concatenation process

Apart from the simplest Buffer, there is also PrioritizedBuffer (for prioritized experience replay),
DistributedBuffer used in IMPALA, and DistributedPrioritizedBuffer used in DQNApex and
DDPGApex.

We will not discuss about the internal implementations of distributed buffers here.

Algorithm

Now that algorithms have got samples from buffers, they can start training their models. The three types of model free
RL algorithms supported by Machin have three respective internal data path.

For more detailed descriptions of data paths and model requirements of all RL algorithms, please refer to Algorithm
model requirements.

In order to bridge the gap between models and algorithms, Machin uses a function named safe_call() to
pass data from algorithms to your models, and uses different class methods defined in algorithms like DDPG.
action_transform_function() to pack up raw data from your models before using them in the algorithm
framework. With this design, Machin is able to achieve API consistency between algorithms while maintaining code
simplicity.

Again, lets take the classic DQN framework as an example, we will use mode="double" here, so that a double DQN
framework will be initialized, the models used in the DQN framework are Q networks. Q networks should accept a
state and return value for each possible discreet action, ideally we would like to define the model according to
this description exactly, like the one below, which accepts a single state argument in its forward() function, and
returns a value tensor:

class QNet(nn.Module):
def __init__(self, state_dim, action_num):

super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)

(continues on next page)
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self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
return self.fc3(a)

And now in the DQN.update() method, we have sampled a batch of state, action, next_state etc, to train
this Q network:

batch_size, (state, action, reward, next_state, terminal, others) = \
self.replay_buffer.sample_batch(self.batch_size,

concatenate_samples,
sample_method="random_unique",
sample_attrs=[

"state", "action",
"reward", "next_state",
"terminal", "*"

])

where major attributes like state, action, next_state are dictionaries of tensors, while sub attributes like
reward and terminal are two tensors of shape [batch_size, 1], we will ignore others for now, because
if you are not inheriting from the DQN framework and write your own DQN.reward_func(), others does
nothing.

In order to get the target Q value, which is used as an value estimation of the next state, we must use the Q network /
the target Q network to criticize the sampled next_state:

q_value = self.criticize(state)

DQN.criticize() internally calls safe_call():

if use_target:
return safe_call(self.qnet_target, state)

else:
return safe_call(self.qnet, state)

safe_call() is a relatively complex function, it does the following things in general:

1. Check input & output device of your model, if they are not defined, try to
automatically determine them by checking locations of all parameters.

2. Check argument names of the forward method of your model, this step will fail
if it is not defined or your model is a JIT model complied by pytorch.

3. Try to resolve values of arguments by looking them up in the passed dictionaries,
Additional keys in dictionaries that does not belong to args will be ignored.

Therefore, the sampled state must have the required key: “state”, and “state” is the first argument (exclude self) of
QNet.forwrad.

After forwarding, the Q network will pass predicted Q values back to the DQN framework, and data path is complete,
the result Q values of next step will be passed to DQN.reward_func() to calculate target Q values, and then new
values will be used to train the online Q network.

3.1. Tutorials 17
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Summary

Generally speaking, Just treat all above process as an “advanced kwargs call”, During sampling, you will interact with
your environment, and store some state tensors as values in a dictionary:

old_state = state = t.zeros([1, 5])
action = t.zeros([1, 2])
for _ in range(100):

dqn.store_transition({
"state": {"state": old_state},
"action": {"action": action},
"next_state": {"state": state},
"reward": 1.0,
"terminal": False

})

Then during training, you will invoke the update method of your framework, and it will concatenate states, actions,
and next states in the first dimension:

batch_size, (state, action, reward, next_state, terminal, others) = \
self.replay_buffer.sample_batch(self.batch_size,

concatenate_samples,
sample_method="random_unique",
sample_attrs=[

"state", "action",
"reward", "next_state",
"terminal", "*"

])

# state = {"state": t.zeros([batch_size, 5])}
# action = {"action": t.zeros([batch_size, 2])}
# next_state = {"state": t.zeros([batch_size, 5])}

Then states, actions, and next states will be passed to your networks, safely, since tensors will be automatically moved
to your model’s input device, and input device can be automatically determined or manually specified:

# DQN
q_value = self.criticize(state)

# DDPG
next_value = self.criticize(next_state, next_action, True)

# PPO
__, new_action_log_prob, new_action_entropy, *_ = \

self.eval_act(state, action)
...
value = self.criticize(state)

And criticized values will be used to update your networks, done.

18 Chapter 3. Tutorials and examples
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3.1.3 Parallel, distributed

Author: Muhan Li

This tutorial is going to give you a brief overview of how to write parallel & distributed programs, with Machin.

What are they?

Parallel means a set of computation processes executed simultaneously, whether synchronous or asynchronous.

Distributed means a system whose components are located on different entities, which are usually computers con-
nected by networks.

Overview

Parallel

Traditional perspective

From the perspective of traditional parallel computation, there are many levels of parallelism, supported by Machin,
based on PyTorch, from fine to coarse:

1. Element level parallelism, based on multidimensional tensor computations.

2. Task level parallelism, achieved by multi-threading, either provided by python threads, or the JIT fork mecha-
nism of PyTorch (with no GIL).

3. Task level parallelism, achieved by multi-processing, either on the same node, or on different nodes.

For element level parallelism, we can either use existing tensor operators, or use more flexible operators such as
torch.einsum to make customized operators, or write our own CUDA kernels. We can even use torch.jit to
compile our models and get some performance improvements over plain python APIs. Machin doesn’t provide any
utility in this area.

For based task level parallelism, the basic python libraries, such as threading and multiprocessing already
provide enough functions to achieve the latter two parallelisms. Machin provides the following enhancements:

1. Watch for exceptions happening in threads/processes.

2. Process/Thread pools with local function execution ability, accurate control over tensor serialization policy.

3. Process/Thread pools with contexts, allow users to pass hard-to-construct objects before executing tasks.

4. Inter-process queues with accurate control over tensor serialization policy.

Neural network perspective

From the perspective of neural networks, there are some parallelism paradigms we would like to achieve, with tradi-
tional parallel architectures:

1. Model level parallelism in small batch inference of many small models.

2. Model level parallelism in large batch inference of one potentially huge model.

3. Model level “parallelism” in storing an extremely large model across multiple devices or nodes.

Currently, there is no perfect way to deal with the first scenario, because threads in python are constrained by GIL,
while processes are too slow. In MADDPG, Machin choose to utilize the JIT function provided by pytorch, and use
compiled JIT models to work around the GIL restriction, this method is proved to have about 50% speed advantage
over regular thread pools.
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The second scenario could be dealt with DistributedDataParallel in PyTorch, by splitting the large batch
into several smaller batches, then perform inference on different processes asynchronously.

The last scenario is also known as “model sharding”, which means split a huge model up into several smaller models.
It would be more favorable to users if this could be done automatically by the framework. However, due to the design
of PyTorch, where tensors, not models, are real entities bound to device, it is not possible to achieve this function
directly, with PyTorch, as of version 1.5.0. Machin currently does not provide automatic model sharding as well, but
our internal implementation do support implementing such a feature, this feature might will be added in the future.
Currently, Machin only provides automatic assignment of (splitted) models, with ModelAssigner.

Reinforcement learning perspective

When it comes to RL algorithms, these parallelisms are usually required:

1. Environment parallelism, where multiple same environments are executed synchronously in parallel, to produce
larger batches of observations.

2. Agent parallelism, where multiple agents are learning synchronously or asynchronously, like A3C, DQNApex.

3. Agent parallelism in multi-agent algorithms, where multiple agents of different types are learning synchronously
or asynchronously, like MADDPG

Machin provides parallel environment wrappers for the first scenario, like openai_gym.
ParallelWrapperSubProc, which starts multiple worker processes, create an environment instance in
each worker, then send commands and receive responses in batches.

The second scenario is more tricky, since agents are usually distributed across “parataxis” (same-level) processes, and
on multiple nodes rather than “hypotaxis” sub-processes started in a process pool, on the same node. We will discuss
this part in the Distributed section.

The third scenario depends on the RL algorithm framework, for MADDPG, each agent corresponds to a pair of separate
actor and critic, in this case, only task level parallelism based threads could be used to solve the problem, because it
is hard to create batches, caused by parameter and model architecture difference. But if we are using single agent RL
algorithms such as DDPG to train a group of homogeneous agents, then batching is preferred due its efficientcy.

Distributed

Distributed is awesome, as well as extremely painful to deal with, hard to design, and even harder to debug, because
applications are often required to have some crucial features like consistency, availability, partition-tolerance, and
good performance.

Currently, since Machin relies on the PyTorch RPC framework, it does not provide any distribute mechanism able
to guarantee any part of consistency, availability or partition-tolerance, due to some limitations in the PyTorch RPC
framework, as of version 1.5.0.

What Machin provide is a more advanced set of RPC APIs: an implementation of RPC groups (namespace), on which
you can register a service with register or share a resource with pair, like the code below:

self.group.pair(server_name,
OrderedServerSimple(self.server_name, self.group))

self.group.register(server_name + "/_push_service", self._push_service)
self.group.register(server_name + "/_pull_service", self._pull_service)

This “DNS” like mechanism enables Machin to abstract away “name”s of processes, and a specific server process,
instead, every process who wants to access the service/resource are faced with a registration table. This table could be
different, depending on the actual process running the service, and the internal implementation of the service. With
this design, Machin is able to provide some general distributed implementations such as DistributedBuffer,
DistributedPrioritizedBuffer, PushPullGradServer, etc.
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Apart from this, Machin just provides a thin layer of incapsulation over the somewhat complex APIs of torch.
distributed and torch.distributed.rpc, to make them less confusing.

Examples

In order to fully understand all the functions provided machin.parallel, we should read some detailed use cases,
this part requires proficiency with but not a deep understanding of:

1. threading library of python

2. multiprocessing library of python

3. torch.distributed module

4. torch.distributed.rpc module

If below examples are not enough for you, please refer to tests

Multi-threading examples

Waiting on multiple events

Detect exception thrown in a sub-thread

Using thread pools and context thread pools

Multi-processing examples

Serialization

Detect exception thrown in a sub-process

Using pools and context pools

Distributed examples

Distributed world and collective group

Distributed RPC examples

Distributed world and rpc group

A simple key-value server with version tracking

3.1. Tutorials 21

https://github.com/iffiX/machin/tree/master/test
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/mth_event.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/mth_exception.py
https://github.com/iffiX/machin/blob/master/test/parallel/test_pool.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/mpr_pickle.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/mpr_exception.py
https://github.com/iffiX/machin/blob/master/test/parallel/test_pool.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/mpr_coll.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/dist_rpc.py
https://github.com/iffiX/machin/blob/master/examples/tutorials/parallel_distributed/dist_oserver.py


Machin, Release 0.3.4

Model parallel examples

Assigning models automatically

3.1.4 Unleash distributed power

Author: Muhan Li

In this tutorial, we are going to try out some distributed single agent RL algorithms, they are:

1. A3C

2. DQNApex and DDPGApex

3. IMPALA

Now let’s begin!

A3C

Full code: A3C code

A3C is the simplest distributed RL algorithm, among them all. We can describe its implementation with the following
graph:

Fig. 3.5: A3C architecture

And a segment of pseudo code:

Fig. 3.6: A3C pesudo code
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A3C is basically a bunch of A2C agents with a gradient reduction server. A3C(A2C) agents will interact with their
environment simulators, train their local actors and critics, then push gradients to the gradient reduction server, the
gradient reduction server will apply reduced gradients to its internal models (managed actor and critic network), then
push the updated parameters to a key-value server. Agents will be able to pull the newest parameters and continue
updating.

All A3C agents are fully asynchronous, gradient pushing & parameter pulling are asynchronous as well.

We will use the “CartPole-v0” environment from OpenAI Gym as an example, the actor network and critic network
are as follows:

class Actor(nn.Module):
def __init__(self, state_dim, action_num):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
probs = t.softmax(self.fc3(a), dim=1)
dist = Categorical(probs=probs)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy

class Critic(nn.Module):
def __init__(self, state_dim):

super(Critic, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)

def forward(self, state):
v = t.relu(self.fc1(state))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v

In order to initialize the A3C framework, we need to first initialize the distributed world:

# initlize distributed world first
_world = World(world_size=3, rank=rank,

name=str(rank), rpc_timeout=20)

then provide a PushPullGradServer to it, Machin provides some helpful utility functions to aid inexperienced
users initialize the distributed environment easily:

from machin.frame.helpers.servers import grad_server_helper
servers = grad_server_helper(

[lambda: Actor(observe_dim, action_num),

(continues on next page)
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(continued from previous page)

lambda: Critic(observe_dim)],
learning_rate=5e-3

)

Note all helpers from machin.frame.helpers.servers requires all processes in the distributed world to enter.

Finally we can compose the complete setup of A3C:

# initlize distributed world first
_world = World(world_size=3, rank=rank,

name=str(rank), rpc_timeout=20)

actor = Actor(observe_dim, action_num)
critic = Critic(observe_dim)

# in all test scenarios, all processes will be used as reducers
servers = grad_server_helper(

[lambda: Actor(observe_dim, action_num),
lambda: Critic(observe_dim)],

learning_rate=5e-3
)
a3c = A3C(actor, critic,

nn.MSELoss(reduction='sum'),
servers)

And start training, just as the A2C algorithm:

# manually control syncing to improve performance
a3c.set_sync(False)

# begin training
episode, step, reward_fulfilled = 0, 0, 0
smoothed_total_reward = 0
terminal = False

while episode < max_episodes:
episode += 1
total_reward = 0
terminal = False
step = 0

state = t.tensor(env.reset(), dtype=t.float32).view(1, observe_dim)

# manually pull the newest parameters
a3c.manual_sync()
tmp_observations = []
while not terminal and step <= max_steps:

step += 1
with t.no_grad():

old_state = state
# agent model inference
action = a3c.act({"state": old_state})[0]
state, reward, terminal, _ = env.step(action.item())
state = t.tensor(state, dtype=t.float32).view(1, observe_dim)
total_reward += reward

tmp_observations.append({

(continues on next page)
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(continued from previous page)

"state": {"state": old_state},
"action": {"action": action},
"next_state": {"state": state},
"reward": reward,
"terminal": terminal or step == max_steps

})

# update
a3c.store_episode(tmp_observations)
a3c.update()

# show reward
smoothed_total_reward = (smoothed_total_reward * 0.9 +

total_reward * 0.1)
logger.info("Process {} Episode {} total reward={:.2f}"

.format(rank, episode, smoothed_total_reward))

if smoothed_total_reward > solved_reward:
reward_fulfilled += 1
if reward_fulfilled >= solved_repeat:

logger.info("Environment solved!")
# will cause torch RPC to complain
# since other processes may have not finished yet.
# just for demonstration.
exit(0)

else:
reward_fulfilled = 0

A3C agents should will be successfully trained within about 1500 episodes, they converge much slower than A2C
agents:

[2020-07-31 00:21:37,690] <INFO>:default_logger:Process 1 Episode 1346 total
→˓reward=184.91
[2020-07-31 00:21:37,723] <INFO>:default_logger:Process 0 Episode 1366 total
→˓reward=171.22
[2020-07-31 00:21:37,813] <INFO>:default_logger:Process 2 Episode 1345 total
→˓reward=190.73
[2020-07-31 00:21:37,903] <INFO>:default_logger:Process 1 Episode 1347 total
→˓reward=186.41
[2020-07-31 00:21:37,928] <INFO>:default_logger:Process 0 Episode 1367 total
→˓reward=174.10
[2020-07-31 00:21:38,000] <INFO>:default_logger:Process 2 Episode 1346 total
→˓reward=191.66
[2020-07-31 00:21:38,000] <INFO>:default_logger:Environment solved!

DQNApex and DDPGApex

Full code: DQNApex code

DQNApex and DDPGApex are actually based on the same architecture, therefore in this section, we are going to take
DQNApex as an example, its distributed architecture could be described in the following graph:

Fig. 3.7: DQNApex architecture

And the pseudo code in essay:
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Fig. 3.8: DQN-Apex pesudo code
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The Apex architecture decouples the sampling and updating process with the prioritized replay buffer. There could be
several implementations, such as:

1. using a central replay buffer on a single process

2. using a distributed buffer, with a central stopping signal.

3. using a distributed buffer, each buffer with a separate lock.

Machin choose the third implementation because it is most efficient:

#1 is slow because each appending requires a RPC process to update the global weight tree, and it also doesn’t scale
when the number of workers(samplers) grows too large, such as 100+ workers.

The central lock used in #2 is meant to protect the importance sampling-updating process, so each buffer maintains a
local weight tree, during sampling, the learner will signal “STOP” to all workers, and signal “START” to all workers
when importance weight update is completed, however, this design does not truly decouples learning and sampling,
therefore most of the time workers are just hanging and wait for the learner to complete updaing.

#3 design is the best, because each append operation is completely local (only needs to acquire a local lock), and
global sampling is complete decoupled from local appending (because lock are immediately released after returning
sampled data, and not till update complete) as show in figure Fig. 3.7.

However, it could be very tricky to implement this process, because appending is still happening after sampling and
before the learner finishes updating importance sampling weights (is-weights), therefore Machin uses a taint table,
which is essentially a table full of auto increment counters, each counter maps to an entry slot in the lower ring buffer,
and is incremented if the entry has been replaced with new entries. This replacement should will not be very often if
the buffer has enough space, (100000+), therefore guarantee the correctness of importance weight update.

There is one thing to note, it could be indefinitely long for learner to calculate the virtual global weight sum tree
using the root node of all local weight sum trees as leaves, therefore at the time of sampling, the used weight sum of
local trees is already outdated, and sampling probability of each tree should have changed. However, if the size of
each local buffer is large enough, then the ratio of difference between the old collected local weight sums and current
weight sums should be acceptable.

Now that we know how the Apex framework is designed, we may try an example. We will use the “CartPole-v0”
environment from OpenAI Gym as an example, the Q networks is as follows:

class QNet(nn.Module):
def __init__(self, state_dim, action_num):

super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, some_state):
a = t.relu(self.fc1(some_state))
a = t.relu(self.fc2(a))
return self.fc3(a)

Because apex frameworks relies on the DistributedPrioritizedBuffer, the learner needs to know the posi-
tion and service name of each local buffer, as show in figure Fig. 3.7, in order to initialize the Apex framework, we
need to provide a RPC process group, where all learner(s) and workers will live on:

apex_group = world.create_rpc_group("apex", ["0", "1", "2"])

And we will also provide a model server on which learner(s) will store the newest parameters and workers will pull
the newest parameters from the server. This kind of parameter server is different from the PushPullGradServer
used above, and we will name it as PushPullModelServer, Currently, each PushPullModelServer only
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manages one model per server instance, and since there is only one model needs to be shared in DQN (the online Q
network), we only need one model server instance:

servers = model_server_helper(model_num=1)
dqn_apex = DQNApex(q_net, q_net_t,

t.optim.Adam,
nn.MSELoss(reduction='sum'),
apex_group,
(servers[0],),
replay_device=c.device,
replay_size=c.replay_size)

The tasks of learner(s) and workers are quite a bit different, since learner(s) only needs to update their internal models
repeatedly, using samples from workers’ buffers, and workers only need to do update-sample-update-sample. . . , they
will run different branches in the main program.

Maybe you want to ask, why are we using learner(s), isn’t the original essay stating that there is only one learner and
multiple workers? The answer is: Machin supports using DistributedDataParallel (DataParallel is also supported)
from PyTorch inside DQNApex, so that you may distribute the updating task across multiple learner processes, if
your models is way too large to be computed by a single process. It is not sensible to using this technique with small
models, but for pure demonstration purpose, we will use it here:

if rank in (2, 3):
# learner_group.group is the wrapped torch.distributed.ProcessGroup
learner_group = world.create_collective_group(ranks=[2, 3])

# wrap the model with DistributedDataParallel
# if current process is learner process 2 or 3
q_net = DistributedDataParallel(module=QNet(observe_dim, action_num),

process_group=learner_group.group)
q_net_t = DistributedDataParallel(module=QNet(observe_dim, action_num),

process_group=learner_group.group)
else:

q_net = QNet(observe_dim, action_num)
q_net_t = QNet(observe_dim, action_num)

# we may use a smaller batch size to train if we are using
# DistributedDataParallel
dqn_apex = DQNApex(q_net, q_net_t,

t.optim.Adam,
nn.MSELoss(reduction='sum'),
apex_group,
(servers[0],),
batch_size=50)

The main part of the training process is as follows:

# synchronize all processes in the group, make sure
# distributed buffer has been created on all processes
# in apex_group
apex_group.barrier()

# manually control syncing to improve performance
dqn_apex.set_sync(False)
if rank in (0, 1):

# Process 0 and 1 are workers(samplers)
# begin training
episode, step, reward_fulfilled = 0, 0, 0

(continues on next page)
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smoothed_total_reward = 0

while episode < max_episodes:
# sleep to wait for learners keep up
sleep(0.1)
episode += 1
total_reward = 0
terminal = False
step = 0

state = t.tensor(env.reset(), dtype=t.float32).view(1, observe_dim)

# manually pull the newest parameters
dqn_apex.manual_sync()
while not terminal and step <= max_steps:

step += 1
with t.no_grad():

old_state = state
# agent model inference
action = dqn_apex.act_discrete_with_noise(

{"state": old_state}
)
state, reward, terminal, _ = env.step(action.item())
state = t.tensor(state, dtype=t.float32)\

.view(1, observe_dim)
total_reward += reward

dqn_apex.store_transition({
"state": {"state": old_state},
"action": {"action": action},
"next_state": {"state": state},
"reward": reward,
"terminal": terminal or step == max_steps

})

smoothed_total_reward = (smoothed_total_reward * 0.9 +
total_reward * 0.1)

logger.info("Process {} Episode {} total reward={:.2f}"
.format(rank, episode, smoothed_total_reward))

if smoothed_total_reward > solved_reward:
reward_fulfilled += 1
if reward_fulfilled >= solved_repeat:

logger.info("Environment solved!")

# will cause torch RPC to complain
# since other processes may have not finished yet.
# just for demonstration.
exit(0)

else:
reward_fulfilled = 0

elif rank in (2, 3):
# wait for enough samples
while dqn_apex.replay_buffer.all_size() < 500:

sleep(0.1)
while True:

(continues on next page)
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dqn_apex.update()

Result:

[2020-08-01 12:51:04,323] <INFO>:default_logger:Process 1 Episode 756 total
→˓reward=192.42
[2020-08-01 12:51:04,335] <INFO>:default_logger:Process 0 Episode 738 total
→˓reward=187.58
[2020-08-01 12:51:04,557] <INFO>:default_logger:Process 1 Episode 757 total
→˓reward=193.17
[2020-08-01 12:51:04,603] <INFO>:default_logger:Process 0 Episode 739 total
→˓reward=188.72
[2020-08-01 12:51:04,789] <INFO>:default_logger:Process 1 Episode 758 total
→˓reward=193.86
[2020-08-01 12:51:04,789] <INFO>:default_logger:Environment solved!

IMPALA

Full code: IMPALA code

The IMPALA algorithm has the same parallel architecture as DQNApex and DDPGApex do, the only difference is that
the internal distributed buffer it is using is a simple distributed buffer, with no distributed prioritized tree:

Fig. 3.9: Impala architecture

The pseudo code of the IMPALA algorithm is as follows:

where the 𝑉 𝑇𝑟𝑎𝑐𝑒 function is defined as:

𝑣𝑠 = 𝑉 (𝑋𝑠) +

𝑠+𝑛−1∑︁
𝑡=𝑠

𝛾𝑡−𝑠(

𝑡−1∏︁
𝑖=𝑠

𝑐𝑖)𝛿𝑡𝑉

𝛿𝑡𝑉 = 𝜌𝑡(𝑟𝑡 + 𝛾𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡))

𝜌𝑡 = 𝑚𝑖𝑛(𝜌𝑚𝑎𝑥,
𝜋(𝑎𝑡|𝑥𝑡)

𝜇(𝑎𝑡|𝑥𝑡)
)

𝑐𝑖 = 𝑚𝑖𝑛(𝑐𝑚𝑎𝑥,
𝜋(𝑎𝑖|𝑥𝑖)

𝜇(𝑎𝑖|𝑥𝑖)
)

In order to initialize the IMPALA framework, we need to pass two accessors to two individual
PushPullModelServer to the framework, and take note that IMPALA does not support storing a single step**,
since v-trace calculation requires sampling complete episodes, all transition objects in the IMPALA buffer are episodes
rather than steps, therefore the used batch_size is set to 2, which is much smaller then 50 used in DQNApex:

if rank in (2, 3):
# learner_group.group is the wrapped torch.distributed.ProcessGroup
learner_group = world.create_collective_group(ranks=[2, 3])

# wrap the model with DistributedDataParallel
# if current process is learner process 2 or 3
actor = DistributedDataParallel(module=Actor(observe_dim, action_num),

process_group=learner_group.group)
critic = DistributedDataParallel(module=Critic(observe_dim),

(continues on next page)
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Fig. 3.10: Impala pesudo code
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process_group=learner_group.group)
else:

actor = Actor(observe_dim, action_num)
critic = Critic(observe_dim)

# we may use a smaller batch size to train if we are using
# DistributedDataParallel

# note: since the impala framework is storing a whole
# episode as a single sample, we should wait for a smaller number
impala = IMPALA(actor, critic,

t.optim.Adam,
nn.MSELoss(reduction='sum'),
impala_group,
servers,
batch_size=2)

The main part of the training process is almost the same as that of DQNApex:

# synchronize all processes in the group, make sure
# distributed buffer has been created on all processes in apex_group
impala_group.barrier()

# manually control syncing to improve performance
impala.set_sync(False)
if rank in (0, 1):

# Process 0 and 1 are workers(samplers)
# begin training
episode, step, reward_fulfilled = 0, 0, 0
smoothed_total_reward = 0

while episode < max_episodes:
# sleep to wait for learners keep up
sleep(0.1)
episode += 1
total_reward = 0
terminal = False
step = 0

state = t.tensor(env.reset(), dtype=t.float32).view(1, observe_dim)

# manually pull the newest parameters
impala.manual_sync()
tmp_observations = []
while not terminal and step <= max_steps:

step += 1
with t.no_grad():

old_state = state
# agent model inference
action, action_log_prob, *_ = \

impala.act({"state": old_state})
state, reward, terminal, _ = env.step(action.item())
state = t.tensor(state, dtype=t.float32) \

.view(1, observe_dim)
total_reward += reward

tmp_observations.append({
(continues on next page)
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(continued from previous page)

"state": {"state": old_state},
"action": {"action": action},
"next_state": {"state": state},
"reward": reward,
"action_log_prob": action_log_prob.item(),
"terminal": terminal or step == max_steps

})

impala.store_episode(tmp_observations)
smoothed_total_reward = (smoothed_total_reward * 0.9 +

total_reward * 0.1)
logger.info("Process {} Episode {} total reward={:.2f}"

.format(rank, episode, smoothed_total_reward))

if smoothed_total_reward > solved_reward:
reward_fulfilled += 1
if reward_fulfilled >= solved_repeat:

logger.info("Environment solved!")

# will cause torch RPC to complain
# since other processes may have not finished yet.
# just for demonstration.
exit(0)

else:
reward_fulfilled = 0

elif rank in (2, 3):
# wait for enough samples
# note: since the impala framework is storing a whole
# episode as a single sample, we should wait for a smaller number
while impala.replay_buffer.all_size() < 5:

sleep(0.1)
while True:

impala.update()

IMPALA converges very fast, usually within 150 episodes:

[2020-08-01 23:25:34,861] <INFO>:default_logger:Process 1 Episode 72 total reward=185.
→˓32
[2020-08-01 23:25:35,057] <INFO>:default_logger:Process 1 Episode 73 total reward=186.
→˓79
[2020-08-01 23:25:35,060] <INFO>:default_logger:Process 0 Episode 70 total reward=193.
→˓28
[2020-08-01 23:25:35,257] <INFO>:default_logger:Process 1 Episode 74 total reward=188.
→˓11
[2020-08-01 23:25:35,261] <INFO>:default_logger:Process 0 Episode 71 total reward=193.
→˓95
[2020-08-01 23:25:35,261] <INFO>:default_logger:Environment solved!
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3.1.5 Recurrent networks

Author: Muhan Li

Full code 1: DQN

Full code 2: DRQN

Full code 3: PPO

Full code 4: RPPO

Preface

In this tutorial, we are going to try and implement the recurrent architecture in DQN and PPO architecture, the original
architecture of “DRQN” was described in Deep Recurrent Q-Learning for Partially Observable MDPs, for the sake
of simplicity and this tutorial will discard the CNN part used to process Atari game screens, instead, we will directly
access the internal 128 bytes of RAM of tested Atari games.

Now, in order to implement the recurrent architecture, we should have a solid grasp of the following related aspects in
advance:

1. DQN framework

2. Recurrent neural networks, LSTM and GRU

3. MDP and POMDP

Recurrent networks were introduced into the reinforcement learning field to deal with POMDP models, in which
agents are not able to observe the full state of the environment, and they have to rely on their internal memories
of their past observations. The essay used Atari games as the benchmark suite, they compared DRQN with DQN in
multiple scenarios, and shows that DRQN has significant advantage over DQN in the frostbite game, while performing
about as good as / fail to compete with DQN in many other Atari games.

For offline reinforcement learning frameworks relying on the “replay memory”, like DQN and DDPG, the tricky bit
is that by the time of sampling, the trained models (online network and target network) are already different from
the model used to interact with the environment and produce samples, authors of the essay suggested two ways of
updating, both ways requires to provide a contiguous period of samples to the network to compute hidden states, and
back propagation through time.

For online reinforcement learning frameworks such as A2C and PPO with no replaying mechanism, there is no need to
specifically recalculate hidden states, because by the time of training, the stored samples are still generated by a actor
network equal to (when update iteration=0)/ very close to (when update iteration > 0) the trained network. Therefore,
hidden states can be stored along with other observations,

We are going to show the detailed recurrent implementations in the above two reinforcement learning categories, using
DQNPer and PPO respectively.

Network architecture

Used network architectures are in the following graph:

Fig. 3.11: Network architectures
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Design overview

DQN and DRQN

Warning: Compared to the implementation provided in this repo, our implementation of DRQN is significantly
more inefficient, and potentially has different result because:

1. Duplicate states are stored for (history_depth - 1) times.

2. Only the last step in the bootstrapped random updates is performed, Q values evaluated in previous steps are
not used.

You may implement your own framework to overcome these shortcomings using the utilities provided by Machin.

Authors of the original paper choose to train the LSTM layer along with the CNN layers, in order to deal with the
“hidden state” input of the LSTM layer, they proposed two methods:

1. Bootstrapped sequential updates

2. Bootstrapped random updates

“Sequential updates” use the recurrent Q network to train through a whole episode, then BPTT (back propagate through
time). “Random updates” samples a random period of length “unrolled_time_steps” instead of a whole episode, other
details are the same.

In order to achieve this with the DQNPer framework, we will have to store the history observations for each transition,
since the internal replay buffer does not store episodic boundaries between transitions:

old_history = history.get()
new_history = history.append(state).get()
drqn.store_transition({

"state": {"history_mem": old_history},
"action": {"action": action},
"next_state": {"history_mem": new_history},
"reward": reward,
"terminal": terminal

})

Then we will also have to define two branches inside the forward function of our recurrent Q network, one branch
for normal action sampling and another branch for training:

def forward(self, mem=None, hidden=None, history_mem=None):
if mem is not None:

# use `mem`, `hidden`, in sampling
...

else:
# use `history_mem`, in updating
...

We will show the details in the implementation section of this tutorial.
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PPO and RPPO

PPO is much easier to deal with, if we do not BPTT, then we just need to store hidden states along with other states
like:

tmp_observations.append({
"state": {"mem": old_state, "hidden": old_hidden},
"action": {"action": action},
"next_state": {"mem": state, "hidden": hidden},
"reward": reward,
"terminal": terminal

})

However, not using BPTT will lose most benefits of recurrence, if you would like to use this method, then you need to
implement your own framework sampling entire episodes and not timesteps from the replay buffer. Then zero-pad the
sampled episodes so they are all the same length. Finally let your recurrent network go through the sampled episodes
and calculate log probs/actions/hidden states. You may refer to this repo for more information.

Implementation

History

We are going to design a History class which allow users to store new states by append() and returns a fixed-length
trajectory by get(), if there are not enough states to form a complete trajectory, then zero will be used to form paddings:

class History:
def __init__(self, history_depth, state_shape):

self.history = [t.zeros(state_shape) for _ in range(history_depth)]
self.state_shape = state_shape

def append(self, state):
assert (t.is_tensor(state) and

state.dtype == t.float32 and
tuple(state.shape) == self.state_shape)

self.history.append(state)
self.history.pop(0)
return self

def get(self):
# size: (1, history_depth, ...)
return t.cat(self.history, dim=0).unsqueeze(0)

DQN

The Q network will accept a transition trajectory of length history_depth, and returns a Q value tensor:

class QNet(nn.Module):
def __init__(self, history_depth, action_num):

super(QNet, self).__init__()
self.fc1 = nn.Linear(128 * history_depth, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_num)

(continues on next page)

36 Chapter 3. Tutorials and examples

https://github.com/siekmanj/r2l


Machin, Release 0.3.4

(continued from previous page)

def forward(self, mem):
return self.fc3(t.relu(

self.fc2(t.relu(
self.fc1(mem.flatten(start_dim=1))

))
))

In order to provide sampled trajectories to the network, we just need to store “history” instead of “state”:

while not terminal:
step += 1
with t.no_grad():

history.append(state)
# agent model inference
action = dqn.act_discrete_with_noise(

{"mem": history.get()}
)

# info is {"ale.lives": self.ale.lives()}, not used here
state, reward, terminal, _ = env.step(action.item())
state = convert(state)
total_reward += reward
old_history = history.get()
new_history = history.append(state).get()
dqn.store_transition({

"state": {"mem": old_history},
"action": {"action": action},
"next_state": {"mem": new_history},
"reward": reward,
"terminal": terminal

})

DRQN

DRQN network is a little bit more complex:

class RecurrentQNet(nn.Module):
def __init__(self, action_num):

super(RecurrentQNet, self).__init__()
self.gru = nn.GRU(128, 256, batch_first=True)
self.fc1 = nn.Linear(256, 256)
self.fc2 = nn.Linear(256, action_num)

def forward(self, mem=None, hidden=None, history_mem=None):
if mem is not None:

# in sampling
a, h = self.gru(mem.unsqueeze(1), hidden)
return self.fc2(t.relu(

self.fc1(t.relu(
a.flatten(start_dim=1)

))
)), h

else:
# in updating
batch_size = history_mem.shape[0]

(continues on next page)
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seq_length = history_mem.shape[1]
hidden = t.zeros([1, batch_size, 256],

device=history_mem.device)
for i in range(seq_length):

_, hidden = self.gru(history_mem[:, i].unsqueeze(1), hidden)
# a[:, -1] = h
return self.fc2(t.relu(

self.fc1(t.relu(
hidden.transpose(0, 1).flatten(start_dim=1)

))
))

As you can see, the forward method is divided into two parts, the first part is for normal acting, where users will pass
hidden states to the network manually and get actions during sampling:

hidden = t.zeros([1, 1, 256])
state = convert(env.reset())
history = History(history_depth, (1, 128))

while not terminal:
step += 1
with t.no_grad():

old_state = state
history.append(state)
# agent model inference
action, hidden = drqn.act_discrete_with_noise(

{"mem": old_state, "hidden": hidden}
)

The second part is used during updating, where the DQNPer framework will provide a batch of trajectories to the
network and get Q value tensor for last state in each trajectory:

old_history = history.get()
new_history = history.append(state).get()
drqn.store_transition({

"state": {"history_mem": old_history},
"action": {"action": action},
"next_state": {"history_mem": new_history},
"reward": reward,
"terminal": terminal

})

PPO

PPO is the same as DQN, the actor network and critic network will accept a trajectory and return an action/value:

class Actor(nn.Module):
def __init__(self, history_depth, action_num):

super(Actor, self).__init__()
self.fc1 = nn.Linear(128 * history_depth, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_num)

def forward(self, mem, action=None):
a = t.relu(self.fc1(mem.flatten(start_dim=1)))

(continues on next page)
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a = t.relu(self.fc2(a))
probs = t.softmax(self.fc3(a), dim=1)
dist = Categorical(probs=probs)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy

class Critic(nn.Module):
def __init__(self, history_depth):

super(Critic, self).__init__()

self.fc1 = nn.Linear(128 * history_depth, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)

def forward(self, mem):
v = t.relu(self.fc1(mem.flatten(start_dim=1)))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v

RPPO

RPPO actor will accept a hidden state, critic will accept one state instead of a trajectory comprised of multiple states:

class RecurrentActor(nn.Module):
def __init__(self, action_num):

super(RecurrentActor, self).__init__()
self.gru = nn.GRU(128, 256, batch_first=True)
self.fc1 = nn.Linear(256, 256)
self.fc2 = nn.Linear(256, action_num)

def forward(self, mem, hidden, action=None):
hidden = hidden.transpose(0, 1)
a, hidden = self.gru(mem.unsqueeze(1), hidden)
a = self.fc2(t.relu(

self.fc1(t.relu(a.flatten(start_dim=1)))
))
probs = t.softmax(a, dim=1)
dist = Categorical(probs=probs)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy, hidden

class Critic(nn.Module):
def __init__(self):

super(Critic, self).__init__()

(continues on next page)
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self.fc1 = nn.Linear(128, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, 1)

def forward(self, mem):
v = t.relu(self.fc1(mem))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v

Test results

Note: These test results are put here for pure demonstration purpose, they are not intended for statistical comparision.

It seems that the DRQN implementation is extremely unstable, DQN is not quite stable as well, especially when
history_depth > 1. PPO learns a little bit better than DQN when history_depth = 1, but it is able to cross the 300
boundary when history_depth = 4, RPPO is also able to overcome the 300 boundary after 6000 episodes. Since
learning rate is fine tuned, performance of all frameworks drop considerably after some point.

Fig. 3.12: DQN result
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Fig. 3.13: DRQN result
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Fig. 3.14: PPO result (history_depth=1)
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Fig. 3.15: PPO result (history_depth=4)
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Fig. 3.16: RPPO result
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3.2 Advance

3.2.1 Architecture overview

In this section, we will take a brief look at the internal organization of the Machin library, to better understand the
functionality of every module.

Env

Currently machin.env has two sub modules: machin.env.utils and machin.env.wrappers.

The submodule machin.env.utils of the environment module provides some convenient utility functions you
might will need in your own application, such as disabling the rendering window while keeping the rendered result in
OpenAI gym.

The submodule machin.env.wrappers provides process-level parallel environment wrappers for different envi-
ronments.

Framework

machin.frame is the most important core part of the Machin library, the framework module constitutes of:

1. machin.frame.algorithms : RL algorithm implementations.

2. machin.frame.buffers : Replay buffer implementations.

3. machin.frame.helpers : Utility to help you initialize a framework.

4. machin.frame.noise : Action space & parameter space noise generators.

Model

machin.model is a collection of popular network models you might will use in your own program, for example,
ResNet.

Model module also contains the basis of all network modules: NeuralNetworkModule, this wrapper is built upon
regular torch.nn.Module, and allows users to specify input/output sub module.

Parallel

machin.parallel is the second core part of the Machin library, the parallel module is a collection of refined
implementations including:

1. machin.parallel.thread : Thread (With exception catching).

2. machin.parallel.process : Process (With remote exception catching).

3. machin.parallel.queues : Queues. (Used in pools).

4. machin.parallel.pool : Process pools (allow local functions,
customize serialization policy), thread pools, pools with contexts, etc.

5. machin.parallel.assigner : Heuristic based model-device assignment.

6. machin.parallel.server : Implementations of different servers used in distributed
algorithms such as A3C, DQNApex, DDPGApex and IMPALA.
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7. machin.parallel.distributed : A naive implementation of a part of
RFC #41546

Utils

machin.utils is a messy hotchpotch of various tools, it is very hard to categorize them, but they could be helpful
sometimes, so we left them here:

1. machin.utils.checker : A checker implementation, using forward & backward hooks
provided by pytorch to check the input/ouput, input gradient of models. Supports user
defined checkers and tensorboard.

2. machin.utils.conf : Functions designed to load/save a json configuration file, as
well as loading parametrs from commandline.

3. machin.utils.helper_classes : Various helper classes, such as Timer, Counter, etc.

4. machin.utils.learning_rate : Functions used in learning rate schedulers. Useful
if you would like to have finer control over the learning rate.

5. machin.utils.loading : Logging utility module.

6. machin.utils.media : Media writing utility, mainly images and videos, useful if you would
like to log rendered environments.

7. machin.utils.prepare : Functions used to create directories, loading models (take care of
devices automatically), for preparing a training session.

8. machin.utils.save_env : A standard reinforcement training environment creator, will create
unique directories by time for you.

9. machin.utils.visualize : Visualize your model, currently only contains some simple functions
for gradient flow checking.

10. machin.utils.tensorboard: A simple tensorboard wrapper.

3.2.2 Algorithm APIs

Author: Muhan Li

Currently, Machin supports three major types of model-free RL algorithms:

1. Value based algorithms

2. Deterministic policy based algorithms

3. Stochastic policy based algorithms

Algorithms could be grouped into respective categories with the following graph:

We will use some basic symbols to simplify the description:

1. ... means one or more dimensions, with non-zero sizes.

2. <> means optional results / arguments. <...> means any number of optional results / arguments.

Note: When an algorithm API returns one result, the result will not be wrapped in a tuple, when it returns multiple
results, results will be wrapped in a tuple. This design is made to support:
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Fig. 3.17: Algorithm categories
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# your Q network model only returns a Q value tensor
act = dqn.act({"state": some_state})

# your Q network model returns Q value tensor with some additional hidden states
act, h = dqn.act({"state": some_state})

Core APIs

All algorithms provide three core APIs:

1. Acting API, beginning with “act”.

2. Storing API, beginning with “store”.

3. Training API, with name “update”

Acting API

Users will invoke the “act*” api provided by the framework during sampling, to let their models produce an action
with respect to their state input, “*” indicates additional extensions such as “_with_noise”, “_discreet”, etc. depending
on the implementation and type of the RL framework.

Below is a list of supported acting APIs of different frameworks:
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Algorithm class Acting API Input & output Discreet/Contiguous Note
DQN
DQNPer
DQNApex
RAINBOW

act_discreet

Dict[str,
State[batch_size,
. . . ]]
->
Action[batch_size,
1], <. . . >

D

act_discreet_with_noise

Dict[str,
State[batch_size,
. . . ]]
->
Action[batch_size,
1], <. . . >

D

DDPG
DDPGPer
HDDPG
TD3

act

Dict[str,
State[batch_size,
. . . ]]
->
Action[batch_size,
action_dim], <. . . >

C

act_with_noise

Dict[str,
State[batch_size,
. . . ]]
->
Action[batch_size,
action_dim], <. . . >

C

act_discreet

Dict[str,
State[batch_size,
. . . ]] ->

Action[batch_size,
1],
Prob[batch_size,
action_num],
<. . . >

D

act_discreet_with_noise

Dict[str,
State[batch_size,
. . . ]] ->

Action[batch_size,
1],
Prob[batch_size,
action_num],
<. . . >

D

A2C
A3C
PPO
IMPALA
SAC

act

Dict[str,
State[batch_size,
. . . ]] ->

Action[batch_size,
. . . ],

Log_Prob[batch_size,
1],
Entropy[batch_size,
1],
<. . . >

C/D

Contiguous/Discreet
depends on the
distribution you
are using to
reparameterize
your network

MADDPG act

List[Dict[str,
State[batch_size,
. . . ]]]
->
List[Action[batch_size,
action_dim],

<. . . >]

C

act_with_noise

List[Dict[str,
State[batch_size,
. . . ]]]
->
List[Action[batch_size,
action_dim],

<. . . >]

C

act_discreet

List[Dict[str,
State[batch_size,
. . . ]]]
->
List[Action[batch_size,
1],

Prob[batch_size,
action_num],
<. . . >]

D

act_discreet_with_noise

List[Dict[str,
State[batch_size,
. . . ]]]
->
List[Action[batch_size,
1],

Prob[batch_size,
action_num],
<. . . >]

D
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Storing API

Algorithms generally encapsulate a replay buffer inside, the replay buffer is not necessarily a “real” replay buffer. For
online algorithms such as A2C and PPO with no replaying mechanisms, the replay buffer is used as a place to put all
of the samples, and is cleared after every training/update step:

# sample a batch
batch_size, (state, action, reward, next_state,

terminal, target_value, advantage) = \
self.replay_buffer.sample_batch(-1,

sample_method="all",
...)

...
self.replay_buffer.clear()

Most frameworks supports storing a single transition step of a MDP process, or storing the whole MDP process at
once:

some_framework.store_transition(transition: Union[Transition, Dict])
some_framework.store_episode(episode: List[Union[Transition, Dict]])

However, some frameworks may only support the latter one of these two APIs (Eg: IMPALA), due to the special
sampling requirements of the algorithm.

Below is a list of supported storing APIs of different frameworks:
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Algorithm class Storing API Note

DQN
DQNPer
DQNApex
DDPG
DDPGPer
DDPGApex
HDDPG
TD3
SAC

store_transition/store_episode

MADDPG

store_transition/store_episode

Requires you to store
transitions/episodes
of all agents at the
same time.

RAINBOW

store_transition/store_episode

store_transition requires
you to calculate the n-step
value manually.

A2C
PPO
A3C

store_transition/store_episode

store_transition requires
you to calculate the n-step
value, and the generalized
advantage estimation (GAE)
manually.

IMPALA

store_episode

Training API

All frameworks supports the update function, but the keyword arguments of the update function might be a little
bit different. For example, DDPG allows you to choose update actor/critic/their targets, individually, while DQN only
supports choose to update Q network/its target individually.

Moreover, the update function of offline algorithms such as DDPG and online algorithms such as A2C and PPO are
different. Because A2C and PPO will not update on outdated samples, their update function contains an internal
update loop, therefore you should not call them many times:

# DDPG update:
if episode > 100:
for i in range(step.get()):

(continues on next page)
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ddpg.update()

# PPO update:
# update() already contains a loop
ppo.store_episode(tmp_observations)
ppo.update()

and their update will also clear the internal replay buffer every time. So you are recommended to read the imple-
mentation of your selected algorithm before using it somewhere.

Non-core APIs

All algorithms provide these non-core APIs:

1. Saving/Loading API, with name “save” and “load”.

2. Learning Rate Scheduler API, with name “update_lr_scheduler”.

Saving/Loading API

All frameworks provide this pair of APIs, for saving and loading models passed to the algorithm. Internally, the models
passed to the algorithm framework will become a member of the framework instance, for example:

dqn = DQN(q_net, q_net_t, t.optim.Adam, nn.MSELoss(reduction='sum'))

# you may access q_net and q_net_t with:
print(dqn.qnet)
print(dqn.qnet_target)

You can print the _is_restorable attribute of the algorithm class to view models saved/loaded internally, and
print the _is_top attribute of the algorithm class to view top level models, like Q network, actor network, critic
network, etc.:

print(DQN._is_restorable)
# ["qnet_target"]
print(DQN._is_top)
# ["qnet", "qnet_target"]

Saving/Loading API requires you to provide a directory to save/load the models, an optional model name map to
specify the mapping relation between “model <-> saved model name”, and an optional version number indicating the
version of save:

# Model dqn.qnet_target will be saved **as a whole** in "./qnt_1000.pt"
# **saved as whole** means saving like: torch.save(dqn.qnet_target, ...)
dqn.save("./", network_map={"qnet_target": "qnt"}, version=1000)

# If no name mapping is specified, the default "qnet_target" will be used
# as the saving name
dqn.save("./", version=1000)

# If no version is specified, the default saving version number is 0
dqn.save("./", network_map={"qnet_target": "qnt"})

# If no version number is specified, then the model with the largest version

(continues on next page)
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# number will be loaded
dqn.load("./", network_map={"qnet_target": "qnt"})

# Or specify a specific version to load
dqn.load("./", network_map={"qnet_target": "qnt"}, version=1000)

# An invalid version will cause the framework to find the latest available version
dqn.load("./", network_map={"qnet_target": "qnt"}, version=10000)

# If you have a file named "qnt.pt", which has no valid version number, it
# will be ignored.

You may move the saved model files to a different machine with different devices, there is no need to worry about
different device mapping, the parameters of saved models will be loaded into your model(s) passed to the algorithm
framework.

Some frameworks may need to save multiple models, for example, DDPG needs to save a target critic network and a
target actor network, in this case, each model will be saved to a separate file, the loading function will try to find the
maximum available version in the valid version intersection of all models:

# suppose there are these models in the target directory:
# actor_target_0.pt, actor_target_100.pt, actor_target_1000.pt
# critic_target_0.pt, critic_target_100.pt
# then version 100 will be loaded
ddpg.load("./")

Learning Rate Scheduler API

All frameworks have this API, for adjusting the learning rate scheduler passed to the framework:

q_net = QNet(c.observe_dim, c.action_num)
q_net_t = QNet(c.observe_dim, c.action_num)
lr_func = gen_learning_rate_func([(0, 1e-3), (200000, 3e-4)],

logger=logger)
dqn = DQN(q_net, q_net_t,

t.optim.Adam,
nn.MSELoss(reduction='sum'),
replay_device=c.device,
replay_size=c.replay_size,
lr_scheduler=LambdaLR,
lr_scheduler_args=((lr_func,),))

You may invoke it like below, after the first update call:

dqn.update_lr_scheduler()
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Algorithm specific APIs

Since algorithms are drastically different, it is hard to conform some of their features to the same style and design,
therefore, they are exposed as-is if you would like to interface with these APIs, for using the critic network, evaluating
an action, etc. Below is a list of these APIs supported by different frameworks:

Algorithm class Algorithm specific APIs Input & output Note

DQNApex
DDPGApex
A3C
IMPALA

set_sync bool -> None

disable/enable auto local
model
syncing with remote
server(s).

note: syncing is
performed
in every act/criticize/. . .
etc.

DQNApex
DDPGApex
A3C
IMPALA

manual_sync bool -> None

Manually update local
models
by pulling the newest
parameters
from remote server(s).

3.2.3 Algorithm model requirements

Author: Muhan Li

Machin relies on the correct model implementation to function correctly, different RL algorithms may need drastically
dissimilar models. Therefore, in this section, we are going to outline the detailed requirements on models of different
frameworks.

We will use some basic symbols to simplify the model signature:

1. abc_0[*] means a tensor with meaning “abc”, and has index 0 in all argument tensors with the same
meaning, “*” is a wildcard which accepts one or more non-zero dimensions, valid examples are:

state_0[batch_size, 1]
state_1[1, 2, 3, 4, 5]
state_2[. . . ]

2. ... means one or more arguments (tensors/not tensors), or one or more dimensions, with non-zero sizes.

3. <> means optional results / arguments. <...> means any number of optional results / arguments.

Note: When an algorithm API returns one result, the result will not be wrapped in a tuple, when it returns multiple
results, results will be wrapped in a tuple. This design is made to support:

# your Q network model only returns a Q value tensor
act = dqn.act({"state": some_state})

(continues on next page)
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# your Q network model returns Q value tensor with some additional hidden states
act, h = dqn.act({"state": some_state})

Note: the forward method signature must conform to the following definitions exactly, with no more or less
arguments/keyword arguments.

Note: the requirements in this document does not apply to the conditions where: (1) you have made a
custom implementation (2) you have inherited frameworks and customized their result adaptors like DDPG.
action_transform_function(), etc.

DQN, DQNPer, DQNApex

For DQN , DQNPer, DQNApex, Machin expects a Q network:

QNet(state_0[batch_size, ...],
...,
state_n[batch_size, ...])

-> q_value[batch_size, action_num], <...>

where action_num is the number of available discreet actions.

Example:

class QNet(nn.Module):
def __init__(self, state_dim, action_num):

super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, state, state2):
state = t.cat([state, state2], dim=1)
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
return self.fc3(a)

Dueling DQN

An example of the dueling DQN:

class QNet(nn.Module):
def __init__(self, state_dim, action_num):

super(QNet, self).__init__()
self.action_num = action_num
self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc_adv = nn.Linear(16, action_num)
self.fc_val = nn.Linear(16, 1)

def forward(self, some_state):
a = t.relu(self.fc1(some_state))
a = t.relu(self.fc2(a))

(continues on next page)
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batch_size = a.shape[0]
adv = self.fc_adv(a)
val = self.fc_val(a).expand(batch_size, self.action_num)
return val + adv - adv.mean(1, keepdim=True)

RAINBOW

For RAINBOW , Machin expects a distributional Q network:

DistQNet(state_0[batch_size, ...],
...,
state_n[batch_size, ...])

-> q_value_dist[batch_size, action_num, atom_num], <...>

where:

1. action_num is the number of available discreet actions

2. atom_num is the number of q value distribution bins

3. sum(q_value_dist[i, j, :]) == 1

Example:

class QNet(nn.Module):
def __init__(self, state_dim, action_num, atom_num=10):

super(QNet, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num * atom_num)
self.action_num = action_num
self.atom_num = atom_num

def forward(self, state, state2):
state = t.cat([state, state2], dim=1)
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
return t.softmax(self.fc3(a)

.view(-1, self.action_num, self.atom_num),
dim=-1)

DDPG, DDPGPer, DDPGApex, HDDPG, TD3

For DDPG, DDPGPer, DDPGApex, HDDPG, TD3, Machin expects multiple actor and critic networks like:

Actor(state_0[batch_size, ...],
...,
state_n[batch_size, ...])

-> action[batch_size, ...], <...> # if contiguous
-> action[batch_size, action_num], <...> # if discreet

Critic(state_0[batch_size, ...],
...,
state_n[batch_size, ...],

(continues on next page)
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action[batch_size, .../action_num])
-> q_value[batch_size, 1], <...>

where:

1. action_num is the number of available discreet actions

2. sum(action[i, :]) == 1 if discreet.

Example:

class Actor(nn.Module):
def __init__(self, state_dim, action_dim, action_range):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)
self.action_range = action_range

def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
a = t.tanh(self.fc3(a)) * self.action_range
return a

class ActorDiscrete(nn.Module):
def __init__(self, state_dim, action_dim):

# action_dim means action_num here
super(ActorDiscrete, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_dim)

def forward(self, state):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
a = t.softmax(self.fc3(a), dim=1)
return a

class Critic(nn.Module):
def __init__(self, state_dim, action_dim):

super(Critic, self).__init__()

self.fc1 = nn.Linear(state_dim + action_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)

def forward(self, state, action):
state_action = t.cat([state, action], 1)
q = t.relu(self.fc1(state_action))
q = t.relu(self.fc2(q))
q = self.fc3(q)
return q
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A2C, PPO, A3C, IMPALA

For A2C, PPO, A3C, IMPALA, Machin expects multiple actor and critic networks like:

Actor(state_0[batch_size, ...],
...,
state_n[batch_size, ...],
action[batch_size, ...]=None)

-> action[batch_size, ...], <...>
action_log_prob[batch_size, 1]
distribution_entropy[batch_size, 1]

Critic(state_0[batch_size, ...],
...,
state_n[batch_size, ...])

-> value[batch_size, 1], <...>

where:

1. action can be sampled from pytorch distributions using non-differentiable sample().

2. action_log_prob is the log likelihood of the sampled action, must be differentiable.

3. distribution_entropy is the entropy value of reparameterized distribution, must be differentiable.

4. Actor must calculate the log probability of the input action if it is not None, and return the input action
as-is.

Example:

class Actor(nn.Module):
def __init__(self, state_dim, action_num):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
probs = t.softmax(self.fc3(a), dim=1)
dist = Categorical(probs=probs)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy

class ActorContiguous(nn.Module):
def __init__(self, state_dim, action_dim, action_range):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.mu_head = nn.Linear(16, action_dim)
self.sigma_head = nn.Linear(16, action_dim)
self.action_range = action_range

(continues on next page)
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def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
mu = self.mu_head(a)
sigma = softplus(self.sigma_head(a))
dist = Normal(mu, sigma)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()

# If your distribution is different from "Normal" then you may either:
# 1. deduce the remapping function for your distribution and clamping
# function such as tanh
# 2. clamp you action, but please take care:
# 1. do not clamp actions before calculating their log probability,
# because the log probability of clamped actions might will be
# extremely small, and will cause nan
# 2. do not clamp actions after sampling and before storing them in
# the replay buffer, because during update, log probability will
# be re-evaluated they might also be extremely small, and network
# will "nan". (might happen in PPO, not in SAC because there is
# no re-evaluation)
# Only clamp actions sent to the environment, this is equivalent to
# change the action reward distribution, will not cause "nan", but
# this makes your training environment further differ from you real
# environment.

# the suggested way to confine your actions within a valid range
# is not clamping, but remapping the distribution
# from the SAC essay: https://arxiv.org/abs/1801.01290
act_log_prob = dist.log_prob(act)
act_tanh = t.tanh(act)
act = act_tanh * self.action_range

# the distribution remapping process used in the original essay.
act_log_prob -= t.log(self.action_range *

(1 - act_tanh.pow(2)) +
1e-6)

act_log_prob = act_log_prob.sum(1, keepdim=True)

return act, act_log_prob, act_entropy

class Critic(nn.Module):
def __init__(self, state_dim):

super(Critic, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)

def forward(self, state):
v = t.relu(self.fc1(state))
v = t.relu(self.fc2(v))
v = self.fc3(v)
return v
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SAC

For SAC, Machin expects an actor similar to the actors in stochastic policy gradient methods such as A2C, and multiple
critics similar to critics used in DDPG:

Actor(state_0[batch_size, ...],
...,
state_n[batch_size, ...],
action[batch_size, ...]=None)

-> action[batch_size, ...]
action_log_prob[batch_size, 1]
distribution_entropy[batch_size, 1],
<...>

Critic(state_0[batch_size, ...],
...,
state_n[batch_size, ...],
action[batch_size, .../action_num])

-> q_value[batch_size, 1], <...>

where:

1. action can only be sampled from pytorch distributions using differentiable rsample().

2. action_log_prob is the log likelihood of the sampled action, must be differentiable.

3. distribution_entropy is the entropy value of reparameterized distribution, must be differentiable.

4. Actor must calculate the log probability of the input action if it is not None, and return the input action
as-is.

Example:

class Actor(nn.Module):
def __init__(self, state_dim, action_num):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, action_num)

def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
probs = t.softmax(self.fc3(a), dim=1)
dist = Categorical(probs=probs)
act = (action

if action is not None
else dist.sample())

act_entropy = dist.entropy()
act_log_prob = dist.log_prob(act.flatten())
return act, act_log_prob, act_entropy

class ActorContiguous(nn.Module):
def __init__(self, state_dim, action_dim, action_range):

super(Actor, self).__init__()

self.fc1 = nn.Linear(state_dim, 16)
self.fc2 = nn.Linear(16, 16)

(continues on next page)
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self.mu_head = nn.Linear(16, action_dim)
self.sigma_head = nn.Linear(16, action_dim)
self.action_range = action_range

def forward(self, state, action=None):
a = t.relu(self.fc1(state))
a = t.relu(self.fc2(a))
mu = self.mu_head(a)
sigma = softplus(self.sigma_head(a))
dist = Normal(mu, sigma)
act = (action

if action is not None
else dist.rsample())

act_entropy = dist.entropy()

# the suggested way to confine your actions within a valid range
# is not clamping, but remapping the distribution
act_log_prob = dist.log_prob(act)
act_tanh = t.tanh(act)
act = act_tanh * self.action_range

# the distribution remapping process used in the original essay.
act_log_prob -= t.log(self.action_range *

(1 - act_tanh.pow(2)) +
1e-6)

act_log_prob = act_log_prob.sum(1, keepdim=True)

return act, act_log_prob, act_entropy

class Critic(nn.Module):
def __init__(self, state_dim, action_dim):

super(Critic, self).__init__()

self.fc1 = nn.Linear(state_dim + action_dim, 16)
self.fc2 = nn.Linear(16, 16)
self.fc3 = nn.Linear(16, 1)

def forward(self, state, action):
state_action = t.cat([state, action], 1)
q = t.relu(self.fc1(state_action))
q = t.relu(self.fc2(q))
q = self.fc3(q)
return q
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CHAPTER

FOUR

API

4.1 API

4.1.1 machin.env

utils

machin.env.utils provides utilities to deal with various environments.

machin.env.utils.openai_gym.disable_view_window()

wrappers

machin.env.wrappers provides parallel execution wrappers for various environments.

class machin.env.wrappers.base.ParallelWrapperBase(*_, **__)
Bases: abc.ABC

Note: Parallel wrapper is designed to wrap the same kind of environments, they may have different parameters,
but must have the same action and observation space.

abstract reset(idx=None)
Reset all environments if id is None, otherwise reset the specific environment(s) with given index(es).

Parameters idx (Union[int, List[int], None]) – Environment index(es) to be re-
set.

Returns Initial observation of all environments. Format is unspecified.

Return type Any

abstract step(action, idx=None)
Let specified environment(s) run one time step. specified environments must be active and have not reached
terminal states before.

Parameters

• action – actions to take.

• idx (Union[int, List[int], None]) – Environment index(es) to be run.

Returns New states of environments.

Return type Any
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abstract seed(seed=None)
Set seed(s) for all environment(s).

Parameters seed (Union[int, List[int], None]) – A single integer seed for all en-
vironments, or a list of integers for each environment, or None for default seed.

Returns New seed of each environment.

Return type List[int]

abstract render(*args, **kwargs)
Render all environments.

Return type Any

abstract close()
Close all environments.

Return type Any

abstract active()

Returns Indexes of active environments.

Return type List[int]

abstract size()

Returns Number of environments.

Return type int

abstract property action_space
Returns: Action space descriptor.

abstract property observation_space
Returns: Observation space descriptor.

exception machin.env.wrappers.openai_gym.GymTerminationError
Bases: Exception

class machin.env.wrappers.openai_gym.ParallelWrapperDummy(env_creators)
Bases: machin.env.wrappers.base.ParallelWrapperBase

Dummy parallel wrapper for gym environments, implemented using for-loop.

For debug purpose only.

Parameters env_creators (List[Callable[[int], gym.core.Env]]) – List of gym
environment creators, used to create environments, accepts a index as your environment id.

reset(idx=None)

Returns A list of gym states.

Parameters List[int]] idx (Union[int,) –

Return type List[object]

step(action, idx=None)
Let specified environment(s) run one time step. Specified environments must be active and have not
reached terminal states before.

Parameters
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• action (Union[numpy.ndarray, List[Any]]) – Actions sent to each specified
environment, the size of the first dimension must match the number of selected environ-
ments.

• idx (Union[int, List[int]]) – Indexes of selected environments, default is all.

Returns Observation, reward, terminal, and diagnostic info.

Return type Tuple[List[object], List[float], List[bool], List[dict]]

seed(seed=None)
Set seeds for all environments.

Parameters seed (Union[int, List[int]]) – If seed is int, the same seed will be used
for all environments. If seed is List[int], it must have the same size as the number of all
environments. If seed is None, all environments will use the default seed.

Returns Actual used seed returned by all environments.

Return type List[int]

render(idx=None, *_, **__)
Render all/specified environments.

Parameters idx (Union[int, List[int]]) – Indexes of selected environments, default
is all.

Returns A list or rendered frames, of type np.ndarray and size (H, W, 3).

Return type List[numpy.ndarray]

close()
Close all environments.

Return type None

active()
Returns: Indexes of current active environments.

Return type List[int]

size()
Returns: Number of environments.

Return type int

property action_space
Returns: Action space descriptor.

property observation_space
Returns: Observation space descriptor.

class machin.env.wrappers.openai_gym.ParallelWrapperSubProc(env_creators)
Bases: machin.env.wrappers.base.ParallelWrapperBase

Parallel wrapper based on sub processes.

Parameters env_creators (List[Callable[[int], gym.core.Env]]) – List of gym
environment creators, used to create environments on sub process workers, accepts a index as
your environment id.

Return type None

reset(idx=None)

Returns A list of gym states.
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Parameters List[int]] idx (Union[int,) –

Return type List[object]

step(action, idx=None)
Let specified environment(s) run one time step. Specified environments must be active and have not
reached terminal states before.

Parameters

• action (Union[numpy.ndarray, List[Any]]) – Actions sent to each specified
environment, the size of the first dimension must match the number of selected environ-
ments.

• idx (Union[int, List[int]]) – Indexes of selected environments, default is all.

Returns Observation, reward, terminal, and diagnostic info.

Return type Tuple[List[object], List[float], List[bool], List[dict]]

seed(seed=None)
Set seeds for all environments.

Parameters seed (Union[int, List[int]]) – If seed is int, the same seed will be used
for all environments. If seed is List[int], it must have the same size as the number of all
environments. If seed is None, all environments will use the default seed.

Returns Actual used seed returned by all environments.

Return type List[int]

render(idx=None, *args, **kwargs)
Render all/specified environments.

Parameters idx (Union[int, List[int]]) – Indexes of selected environments, default
is all.

Returns A list or rendered frames, of type np.ndarray and size (H, W, 3).

Return type List[numpy.ndarray]

close()
Close all environments, including the wrapper.

Return type None

active()
Returns: Indexes of current active environments.

Return type List[int]

size()
Returns: Number of environments.

Return type int

property action_space
Returns: Action space descriptor.

property observation_space
Returns: Observation space descriptor.
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4.1.2 machin.frame

algorithms

Base

class machin.frame.algorithms.base.TorchFramework
Bases: object

Base framework for all algorithms

enable_multiprocessing()
Enable multiprocessing for all modules.

classmethod get_restorable()
Get restorable modules.

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir (str) – Save directory.

• network_map (Dict[str, str]) – Key is module name, value is saved name.

• version (int) – Version number of the save to be loaded.

save(model_dir, network_map=None, version=0)
Save models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir (str) – Save directory.

• network_map (Dict[str, str]) – Key is module name, value is saved name.

• version (int) – Version number of the new save.

visualize_model(final_tensor, name, directory)

Parameters

• final_tensor (torch.Tensor) –

• name (str) –

• directory (str) –
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DDPG

class machin.frame.algorithms.ddpg.DDPG(actor, actor_target, critic,
critic_target, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None, batch_size=100,
update_rate=0.001, actor_learning_rate=0.0005,
critic_learning_rate=0.001, discount=0.99,
gradient_max=inf, replay_size=500000, re-
play_device='cpu', replay_buffer=None, visual-
ize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.base.TorchFramework

DDPG framework.

Note: Your optimizer will be called as:

optimizer(network.parameters(), learning_rate)

Your lr_scheduler will be called as:

lr_scheduler(
optimizer,

*lr_scheduler_args[0],

**lr_scheduler_kwargs[0],
)

Your criterion will be called as:

criterion(
target_value.view(batch_size, 1),
predicted_value.view(batch_size, 1)

)

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• actor_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.
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• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• gradient_max (float) –

act(state, use_target=False, **__)
Use actor network to produce an action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether use the target network.

Returns Any thing returned by your actor network.

act_discrete(state, use_target=False, **__)
Use actor network to produce a discrete action for the current state.

Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Action of shape [batch_size, 1]. Action probability tensor of shape
[batch_size, action_num], produced by your actor. Any other things returned by
your Q network. if they exist.

act_discrete_with_noise(state, use_target=False, **__)
Use actor network to produce a noisy discrete action for the current state.
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Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Noisy action of shape [batch_size, 1]. Action probability tensor of shape
[batch_size, action_num]. Any other things returned by your Q network. if they
exist.

act_with_noise(state, noise_param=0.0, 1.0, ratio=1.0, mode='uniform', use_target=False, **__)
Use actor network to produce a noisy action for the current state.

See also:

machin.frame.noise.action_space_noise

Parameters

• state (Dict[str, Any]) – Current state.

• noise_param (Any) – Noise params.

• ratio (float) – Noise ratio.

• mode (str) – Noise mode. Supported are: "uniform", "normal",
"clipped_normal", "ou"

• use_target (bool) – Whether use the target network.

Returns Noisy action of shape [batch_size, action_dim]. Any other things returned
by your actor network. if they exist.

static action_transform_function(raw_output_action, *_)
The action transform function is used to transform the output of actor to the input of critic. Action trans-
form function must accept:

1. Raw action from the actor model.

2. Concatenated Transition.next_state.

3. Any other concatenated lists of custom keys from Transition.

and returns:

1. A dictionary with the same form as Transition.action

Parameters raw_output_action (Any) – Raw action from the actor model.

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()
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Parameters

• model_dir (str) – Save directory.

• network_map (Dict[str, str]) – Key is module name, value is saved name.

• version (int) – Version number of the save to be loaded.

static reward_function(reward, discount, next_value, terminal, _)

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –

store_transition(transition)
Add a transition sample to the replay buffer.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True,
**__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.

Hysterical DDPG

class machin.frame.algorithms.hddpg.HDDPG(actor, actor_target, critic,
critic_target, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, update_rate=0.005,
actor_learning_rate=0.0005,
critic_learning_rate=0.001, discount=0.99,
gradient_max=inf, q_increase_rate=1.0,
q_decrease_rate=1.0, replay_size=500000,
replay_device='cpu', replay_buffer=None,
visualize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.ddpg.DDPG

HDDPG framework.

See also:

DDPG

Parameters
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• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• actor_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• gradient_max (float) –

• q_increase_rate (float) –

• q_decrease_rate (float) –

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True,
**__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.
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• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

DDPG with prioritized replay

class machin.frame.algorithms.ddpg_per.DDPGPer(actor, actor_target, critic,
critic_target, optimizer, crite-
rion, *_, lr_scheduler=None,
lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, update_rate=0.005,
actor_learning_rate=0.0005,
critic_learning_rate=0.001, dis-
count=0.99, gradient_max=inf, re-
play_size=500000, replay_device='cpu',
replay_buffer=None, visualize=False,
visualize_dir='', **__)

Bases: machin.frame.algorithms.ddpg.DDPG

DDPG with prioritized experience replay.

Warning: Your criterion must return a tensor of shape [batch_size,1] when given two tensors of
shape [batch_size,1], since we need to multiply the loss with importance sampling weight element-
wise.

If you are using loss modules given by pytorch. It is always safe to use them without any modification.

Note: Your optimizer will be called as:

optimizer(network.parameters(), learning_rate)

Your lr_scheduler will be called as:

lr_scheduler(
optimizer,

*lr_scheduler_args[0],

**lr_scheduler_kwargs[0],
)

Your criterion will be called as:

criterion(
target_value.view(batch_size, 1),
predicted_value.view(batch_size, 1)

)

Parameters
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• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• actor_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• gradient_max (float) –

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True,
**__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.
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• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

TD3

class machin.frame.algorithms.td3.TD3(actor, actor_target, critic, critic_target,
critic2, critic2_target, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None, batch_size=100, up-
date_rate=0.005, actor_learning_rate=0.0005,
critic_learning_rate=0.001, discount=0.99,
gradient_max=inf, replay_size=500000, re-
play_device='cpu', replay_buffer=None, visual-
ize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.ddpg.DDPG

TD3 framework. Which adds a additional pair of critic and target critic network to DDPG.

See also:

DDPG

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• actor_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• critic2 (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – The second critic network module.

• critic2_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – The
second target critic network module.

• optimizer (Callable) – Optimizer used to optimize actor, critic,

• criterion (Callable) – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple, Tuple]) – Arguments of the
learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict, Dict]) – Keyword arguments of
the learning rate scheduler.

• batch_size (int) – Batch size used during training.
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• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• gradient_max (float) –

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir (str) – Save directory.

• network_map (Dict[str, str]) – Key is module name, value is saved name.

• version (int) – Version number of the save to be loaded.

static policy_noise_function(actions, *_)

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True,
**__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.
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DQN, Fixed-Target DQN, Dueling DQN, Double DQN

class machin.frame.algorithms.dqn.DQN(qnet, qnet_target, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None, batch_size=100,
update_rate=0.005, learning_rate=0.001, dis-
count=0.99, gradient_max=inf, replay_size=500000,
replay_device='cpu', replay_buffer=None,
mode='double', visualize=False, visualize_dir='',
**__)

Bases: machin.frame.algorithms.base.TorchFramework

DQN framework.

Note: DQN is only available for discrete environments.

Note: Dueling DQN is a network structure rather than a framework, so it could be applied to all three modes.

If mode = "vanilla", implements the simplest online DQN, with replay buffer.

If mode = "fixed_target", implements DQN with a target network, and replay buffer. Described in this
essay.

If mode = "double", implements Double DQN described in this essay.

Note: Vanilla DQN only needs one network, so internally, qnet is assigned to qnet_target.

Note: In order to implement dueling DQN, you should create two dense output layers.

In your q network:

self.fc_adv = nn.Linear(in_features=...,
out_features=num_actions)

self.fc_val = nn.Linear(in_features=...,
out_features=1)

Then in your forward() method, you should implement output as:

adv = self.fc_adv(some_input)
val = self.fc_val(some_input).expand(self.batch_sze,

self.num_actions)
return val + adv - adv.mean(1, keepdim=True)

Note: Your optimizer will be called as:

optimizer(network.parameters(), learning_rate)

Your lr_scheduler will be called as:
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lr_scheduler(
optimizer,

*lr_scheduler_args[0],

**lr_scheduler_kwargs[0],
)

Your criterion will be called as:

criterion(
target_value.view(batch_size, 1),
predicted_value.view(batch_size, 1)

)

Parameters

• qnet (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Q network module.

• qnet_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target Q
network module.

• optimizer (Callable) – Optimizer used to optimize qnet.

• criterion (Callable) – Criterion used to evaluate the value loss.

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple]) – Arguments of the learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict]) – Keyword arguments of the learning rate
scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• mode (str) – one of "vanilla", "fixed_target", "double".

• visualize (bool) – Whether visualize the network flow in the first pass.

• gradient_max (float) –

• visualize_dir (str) –
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act_discrete(state, use_target=False, **__)
Use Q network to produce a discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Action of shape [batch_size, 1]. Any other things returned by your Q network.
if they exist.

act_discrete_with_noise(state, use_target=False, **__)
Use Q network to produce a noisy discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Noisy action of shape [batch_size, 1]. Any other things returned by your Q
network. if they exist.

static action_get_function(sampled_actions)
This function is used to get action numbers (int tensor indicating which discrete actions are used) from the
sampled action dictionary.

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir – Save directory.

• network_map – Key is module name, value is saved name.

• version – Version number of the save to be loaded.

static reward_function(reward, discount, next_value, terminal, _)

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –

store_transition(transition)
Add a transition sample to the replay buffer.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_target=True, concatenate_samples=True, **__)
Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether update the Q network.
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• update_target – Whether update targets.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.

DQN with prioritized replay

class machin.frame.algorithms.dqn_per.DQNPer(qnet, qnet_target, optimizer, cri-
terion, *_, lr_scheduler=None,
lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, update_rate=0.005,
learning_rate=0.001, discount=0.99,
gradient_max=inf, replay_size=500000,
replay_device='cpu', replay_buffer=None,
visualize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.dqn.DQN

DQN with prioritized replay. It is based on Double DQN.

Warning: Your criterion must return a tensor of shape [batch_size,1] when given two tensors of
shape [batch_size,1], since we need to multiply the loss with importance sampling weight element-
wise.

If you are using loss modules given by pytorch. It is always safe to use them without any modification.

Note: DQN is only available for discrete environments.

Note: Dueling DQN is a network structure rather than a framework, so it could be applied to all three modes.

If mode = "vanilla", implements the simplest online DQN, with replay buffer.

If mode = "fixed_target", implements DQN with a target network, and replay buffer. Described in this
essay.

If mode = "double", implements Double DQN described in this essay.

Note: Vanilla DQN only needs one network, so internally, qnet is assigned to qnet_target.

Note: In order to implement dueling DQN, you should create two dense output layers.

In your q network:

self.fc_adv = nn.Linear(in_features=...,
out_features=num_actions)

self.fc_val = nn.Linear(in_features=...,
out_features=1)
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Then in your forward() method, you should implement output as:

adv = self.fc_adv(some_input)
val = self.fc_val(some_input).expand(self.batch_sze,

self.num_actions)
return val + adv - adv.mean(1, keepdim=True)

Note: Your optimizer will be called as:

optimizer(network.parameters(), learning_rate)

Your lr_scheduler will be called as:

lr_scheduler(
optimizer,

*lr_scheduler_args[0],

**lr_scheduler_kwargs[0],
)

Your criterion will be called as:

criterion(
target_value.view(batch_size, 1),
predicted_value.view(batch_size, 1)

)

Parameters

• qnet (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Q network module.

• qnet_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target Q
network module.

• optimizer (Callable) – Optimizer used to optimize qnet.

• criterion (Callable) – Criterion used to evaluate the value loss.

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple]) – Arguments of the learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict]) – Keyword arguments of the learning rate
scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.
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• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• mode – one of "vanilla", "fixed_target", "double".

• visualize (bool) – Whether visualize the network flow in the first pass.

• gradient_max (float) –

• visualize_dir (str) –

update(update_value=True, update_target=True, concatenate_samples=True, **__)
Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether update the Q network.

• update_target – Whether update targets.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

RAINBOW

class machin.frame.algorithms.rainbow.RAINBOW(qnet, qnet_target, optimizer, value_min,
value_max, *_, lr_scheduler=None,
lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, update_rate=0.001,
learning_rate=0.001, dis-
count=0.99, gradient_max=inf,
reward_future_steps=3, re-
play_size=500000, replay_device='cpu',
replay_buffer=None, visualize=False,
visualize_dir='', **__)

Bases: machin.frame.algorithms.dqn.DQN

RAINBOW DQN framework.

RAINBOW framework is described in this essay.

Note: In the RAINBOW framework, the output shape of your q network must be [batch_size,
action_num, atom_num] when given a state of shape [batch_size, action_dim]. And the last
dimension must be soft-maxed. Atom number is the number of segments of your q value domain.

See also:

DQN

Parameters

• qnet (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Q network module.
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• qnet_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target Q
network module.

• optimizer – Optimizer used to optimize actor and critic.

• value_min – Minimum of value domain.

• value_max – Maximum of value domain.

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple]) – Arguments of the learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict]) – Keyword arguments of the learning rate
scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• discount (float) – 𝛾 used in the bellman function.

• reward_future_steps (int) – Number of future steps to be considered when the
framework calculates value from reward.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• mode – one of "vanilla", "fixed_target", "double".

• visualize (bool) – Whether visualize the network flow in the first pass.

• gradient_max (float) –

• visualize_dir (str) –

act_discrete(state, use_target=False, **__)
Use Q network to produce a discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Action of shape [batch_size, 1]. Any other things returned by your Q network.
if they exist.

act_discrete_with_noise(state, use_target=False, **__)
Use Q network to produce a noisy discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.
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• use_target (bool) – Whether to use the target network.

Returns Noisy action of shape [batch_size, 1]. Any other things returned by your Q
network. if they exist.

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

“value” is automatically calculated.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –

store_transition(transition)
Add a transition sample to the replay buffer.

Not suggested, since you will have to calculate “value” by yourself.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_target=True, concatenate_samples=True, **__)
Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether update the Q network.

• update_target – Whether update targets.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

A2C

class machin.frame.algorithms.a2c.A2C(actor, critic, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, actor_update_times=5,
critic_update_times=10, actor_learning_rate=0.001,
critic_learning_rate=0.001, entropy_weight=None,
value_weight=0.5, gradient_max=inf,
gae_lambda=1.0, discount=0.99, normal-
ize_advantage=True, replay_size=500000, re-
play_device='cpu', replay_buffer=None, visual-
ize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.base.TorchFramework

A2C framework.

Important: when given a state, and an optional, action actor must at least return two values:

1. Action

For contiguous environments, action must be of shape [batch_size, action_dim] and
clamped by action space. For discrete environments, action could be of shape [batch_size,
action_dim] if it is a one hot vector, or [batch_size, 1] if it is a categorically encoded
integer.

2. Log likelihood of action (action probability)
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For either type of environment, log likelihood is of shape [batch_size, 1].

Action probability must be differentiable, Gradient of actor is calculated from the gradient of action
probability.

The third entropy value is optional:

3. Entropy of action distribution

Entropy is usually calculated using dist.entropy(), its shape is [batch_size, 1]. You must
specify entropy_weight to make it effective.

Hint: For contiguous environments, action’s are not directly output by your actor, otherwise it would be rather
inconvenient to calculate the log probability of action. Instead, your actor network should output parameters for
a certain distribution (eg: Normal) and then draw action from it.

For discrete environments, Categorical is sufficient, since differentiable rsample() is not needed.

This trick is also known as reparameterization.

Hint: Actions are from samples during training in the actor critic family (A2C, A3C, PPO, TRPO, IMPALA).

When your actor model is given a batch of actions and states, it must evaluate the states, and return the log
likelihood of the given actions instead of re-sampling actions.

An example of your actor in contiguous environments:

class ActorNet(nn.Module):
def __init__(self):

super(ActorNet, self).__init__()
self.fc = nn.Linear(3, 100)
self.mu_head = nn.Linear(100, 1)
self.sigma_head = nn.Linear(100, 1)

def forward(self, state, action=None):
x = t.relu(self.fc(state))
mu = 2.0 * t.tanh(self.mu_head(x))
sigma = F.softplus(self.sigma_head(x))
dist = Normal(mu, sigma)
action = (action

if action is not None
else dist.sample())

action_entropy = dist.entropy()
action = action.clamp(-2.0, 2.0)
action_log_prob = dist.log_prob(action)
return action, action_log_prob, action_entropy

Hint: Entropy weight is usually negative, to increase exploration.

Value weight is usually 0.5. So critic network converges less slowly than the actor network and learns more
conditions.

Update equation is equivalent to:
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𝐿𝑜𝑠𝑠 = 𝑤𝑒 * 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 + 𝑤𝑣 * 𝐿𝑜𝑠𝑠𝑣 + 𝑤𝑎 * 𝐿𝑜𝑠𝑠𝑎 𝐿𝑜𝑠𝑠𝑎 = −𝑙𝑜𝑔_𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 * 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 𝐿𝑜𝑠𝑠𝑣 =
𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛(𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑒𝑙𝑙𝑚𝑎𝑛_𝑣𝑎𝑙𝑢𝑒− 𝑉 (𝑠))

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• actor_update_times (int) – Times to update actor in update().

• critic_update_times (int) – Times to update critic in update().

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• entropy_weight (float) – Weight of entropy in your loss function, a positive entropy
weight will minimize entropy, while a negative one will maximize entropy.

• value_weight (float) – Weight of critic value loss.

• gradient_max (float) – Maximum gradient.

• gae_lambda (float) – 𝜆 used in generalized advantage estimation.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• normalize_advantage (bool) –

act(state, *_, **__)
Use actor network to give a policy to the current state.

Returns Anything produced by actor.
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Parameters Any] state (Dict[str,) –

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

“value” and “gae” are automatically calculated.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –

store_transition(transition)
Add a transition sample to the replay buffer.

Not suggested, since you will have to calculate “value” and “gae” by yourself.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_policy=True, concatenate_samples=True, **__)
Update network weights by sampling from buffer. Buffer will be cleared after update is finished.

Parameters

• update_value – Whether update the Q network.

• update_policy – Whether update the actor network.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.

A3C

class machin.frame.algorithms.a3c.A3C(actor, critic, criterion, grad_server, *_, en-
tropy_weight=None, value_weight=0.5, gradi-
ent_max=inf, gae_lambda=1.0, discount=0.99,
update_times=50, replay_size=500000, re-
play_device='cpu', replay_buffer=None, visual-
ize=False, **__)

Bases: machin.frame.algorithms.a2c.A2C

A3C framework.

See also:

A2C

Note: A3C algorithm relies on parameter servers to synchronize parameters of actor and critic models across
samplers ( interact with environment) and trainers (using samples to train.

The parameter server type PushPullGradServer used here utilizes gradients calculated by trainers:

1. perform a “sum” reduction process on the collected gradients, then apply this reduced gradient to the model
managed by its primary reducer

2. push the parameters of this updated managed model to a ordered key-value server so that all processes,
including samplers and trainers, can access the updated parameters.

The grad_servers argument is a pair of accessors to two PushPullGradServerImpl class.
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Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• optimizer – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• grad_server (Tuple[machin.parallel.server.param_server.
PushPullGradServer, machin.parallel.server.param_server.
PushPullGradServer]) – Custom gradient sync server accessors, the first server
accessor is for actor, and the second one is for critic.

• entropy_weight (float) – Weight of entropy in your loss function, a positive entropy
weight will minimize entropy, while a negative one will maximize entropy.

• value_weight (float) – Weight of critic value loss.

• gradient_max (float) – Maximum gradient.

• gae_lambda (float) – 𝜆 used in generalized advantage estimation.

• discount (float) – 𝛾 used in the bellman function.

• update_times (int) – Number of update iterations per sample period. Buffer will be
cleared after update()

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

act(state, **__)
Use actor network to give a policy to the current state.

Returns Anything produced by actor.

Parameters Any] state (Dict[str,) –

manual_sync()

set_sync(is_syncing)

update(update_value=True, update_policy=True, concatenate_samples=True, **__)
Update network weights by sampling from buffer. Buffer will be cleared after update is finished.

Parameters

• update_value – Whether update the Q network.

• update_policy – Whether update the actor network.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss
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PPO

class machin.frame.algorithms.ppo.PPO(actor, critic, optimizer, crite-
rion, *_, lr_scheduler=None,
lr_scheduler_args=(), lr_scheduler_kwargs=(),
batch_size=100, actor_update_times=5,
critic_update_times=10, actor_learning_rate=0.001,
critic_learning_rate=0.001, entropy_weight=None,
value_weight=0.5, surrogate_loss_clip=0.2, gra-
dient_max=inf, gae_lambda=1.0, discount=0.99,
normalize_advantage=True, replay_size=500000,
replay_device='cpu', replay_buffer=None, visual-
ize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.a2c.A2C

PPO framework.

See also:

A2C

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• actor_update_times (int) – Times to update actor in update().

• critic_update_times (int) – Times to update critic in update().

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• entropy_weight (float) – Weight of entropy in your loss function, a positive entropy
weight will minimize entropy, while a negative one will maximize entropy.

• value_weight (float) – Weight of critic value loss.

• surrogate_loss_clip (float) – Surrogate loss clipping parameter in PPO.

• gradient_max (float) – Maximum gradient.

• gae_lambda (float) – 𝜆 used in generalized advantage estimation.

4.1. API 89



Machin, Release 0.3.4

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• normalize_advantage (bool) –

update(update_value=True, update_policy=True, concatenate_samples=True, **__)
Update network weights by sampling from buffer. Buffer will be cleared after update is finished.

Parameters

• update_value – Whether update the Q network.

• update_policy – Whether update the actor network.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

SAC

class machin.frame.algorithms.sac.SAC(actor, critic, critic_target, critic2,
critic2_target, optimizer, criterion, *_,
lr_scheduler=None, lr_scheduler_args=None,
lr_scheduler_kwargs=None, target_entropy=None,
initial_entropy_alpha=1.0, batch_size=100, up-
date_rate=0.005, actor_learning_rate=0.0005,
critic_learning_rate=0.001, al-
pha_learning_rate=0.001, discount=0.99,
gradient_max=inf, replay_size=500000, re-
play_device='cpu', replay_buffer=None, visual-
ize=False, visualize_dir='', **__)

Bases: machin.frame.algorithms.base.TorchFramework

SAC framework.

See also:

A2C DDPG

Important: When given a state, and an optional action, actor must at least return two values, similar to the
actor structure described in A2C. However, when actor is asked to select an action based on the current state, you
must make sure that the sampling process is differentiable. E.g. use the rsamplemethod of torch distributions
instead of the sample method.

Compared to other actor-critic methods, SAC embeds the entropy term into its reward function directly, rather
than adding the entropy term to actor’s loss function. Therefore, we do not use the entropy output of your actor
network.
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The SAC algorithm uses Q network as critics, so please reference DDPG for the requirements and the definition
of action_trans_func.

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• critic2 (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – The second critic network module.

• critic2_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – The
second target critic network module.

• optimizer (Callable) – Optimizer used to optimize actor, critic and critic2.

• criterion (Callable) – Criterion used to evaluate the value loss.

• *_ –

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple, Tuple]) – Arguments of the
learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict, Dict]) – Keyword arguments of
the learning rate scheduler.

• target_entropy (float) – Target entropy weight 𝛼 used in the SAC soft value func-
tion: 𝑉𝑠𝑜𝑓𝑡(𝑠𝑡) = E𝑞𝑡∼𝜋[𝑄𝑠𝑜𝑓𝑡(𝑠𝑡, 𝑎𝑡) − 𝛼𝑙𝑜𝑔𝜋(𝑎𝑡|𝑠𝑡)]

• initial_entropy_alpha (float) – Initial entropy weight 𝛼

• gradient_max (float) – Maximum gradient.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size. Not compatible with replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.
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• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• alpha_learning_rate (float) –

act(state, **__)
Use actor network to produce an action for the current state.

Returns Anything produced by actor.

Parameters Any] state (Dict[str,) –

static action_transform_function(raw_output_action, *_)

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir – Save directory.

• network_map – Key is module name, value is saved name.

• version – Version number of the save to be loaded.

static reward_function(reward, discount, next_value, terminal, _)

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –

store_transition(transition)
Add a transition sample to the replay buffer.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_policy=True, update_target=True, update_entropy_alpha=True,
concatenate_samples=True, **__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• update_entropy_alpha – Whether to update 𝑎𝑙𝑝ℎ𝑎 of entropy.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss
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update_lr_scheduler()
Update learning rate schedulers.

APEX

class machin.frame.algorithms.apex.DDPGApex(actor, actor_target, critic,
critic_target, optimizer, criterion,
apex_group, model_server, *_,
lr_scheduler=None, lr_scheduler_args=(),
lr_scheduler_kwargs=(), batch_size=100,
update_rate=0.005, learning_rate=0.001,
discount=0.99, replay_size=500000, **__)

Bases: machin.frame.algorithms.ddpg_per.DDPGPer

Massively parallel version of a DDPG with prioritized replay.

The pull function is invoked before using act, act_with_noise, act_discrete,
act_discrete_with_noise and criticize.

The push function is invoked after update.

See also:

DDPGPer

Hint: Your push and pull function will be called like:

function(actor_model, "actor")

The default implementation of pull and push functions is provided by PushPullModelServer.

Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• actor_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• critic_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target
critic network module.

• optimizer (Callable) – Optimizer used to optimize qnet.

• criterion (Callable) – Criterion used to evaluate the value loss.

• apex_group (machin.parallel.distributed.world.RpcGroup) – Group
of all processes using the apex-DDPG framework, including all samplers and trainers.

• model_server (Tuple[machin.parallel.server.param_server.
PushPullModelServer]) – Custom model sync server accessor for actor.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.
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• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Local replay buffer size of a single worker.

act(state, use_target=False, **__)
Use actor network to produce an action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether use the target network.

Returns Any thing returned by your actor network.

act_discrete(state, use_target=False, **__)
Use actor network to produce a discrete action for the current state.

Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Action of shape [batch_size, 1]. Action probability tensor of shape
[batch_size, action_num], produced by your actor. Any other things returned by
your Q network. if they exist.

act_discrete_with_noise(state, use_target=False, **__)
Use actor network to produce a noisy discrete action for the current state.
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Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Noisy action of shape [batch_size, 1]. Action probability tensor of shape
[batch_size, action_num]. Any other things returned by your Q network. if they
exist.

act_with_noise(state, noise_param=0.0, 1.0, ratio=1.0, mode='uniform', use_target=False, **__)
Use actor network to produce a noisy action for the current state.

See also:

machin.frame.noise.action_space_noise

Parameters

• state (Dict[str, Any]) – Current state.

• noise_param (Tuple) – Noise params.

• ratio (float) – Noise ratio.

• mode (str) – Noise mode. Supported are: "uniform", "normal",
"clipped_normal", "ou"

• use_target (bool) – Whether use the target network.

Returns Noisy action of shape [batch_size, action_dim]. Any other things returned
by your actor network. if they exist.

manual_sync()

set_sync(is_syncing)

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True,
**__)

Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

class machin.frame.algorithms.apex.DQNApex(qnet, qnet_target, optimizer, crite-
rion, apex_group, model_server, *_,
lr_scheduler=None, lr_scheduler_args=(),
lr_scheduler_kwargs=(), batch_size=100,
update_rate=0.005, learning_rate=0.001,
discount=0.99, replay_size=500000, **__)

Bases: machin.frame.algorithms.dqn_per.DQNPer
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Massively parallel version of a Double DQN with prioritized replay.

The pull function is invoked before using act_discrete, act_discrete_with_noise and
criticize.

The push function is invoked after update.

See also:

DQNPer

Note: Apex framework supports multiple workers(samplers), and only one trainer, you may use
DistributedDataParallel in trainer. If you use DistributedDataParallel, you must call
update() in all member processes of DistributedDataParallel.

Parameters

• qnet (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Q network module.

• qnet_target (Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]) – Target Q
network module.

• optimizer (Callable) – Optimizer used to optimize qnet.

• criterion (Callable) – Criterion used to evaluate the value loss.

• apex_group (machin.parallel.distributed.world.RpcGroup) – Group
of all processes using the apex-DQN framework, including all samplers and trainers.

• model_server (Tuple[machin.parallel.server.param_server.
PushPullModelServer]) – Custom model sync server accessor for qnet.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple]) – Arguments of the learning rate scheduler.

• lr_scheduler_kwargs (Tuple[Dict]) – Keyword arguments of the learning rate
scheduler.

• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as:

𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Local replay buffer size of a single worker.

act_discrete(state, use_target=False, **__)
Use Q network to produce a discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.
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Returns Action of shape [batch_size, 1]. Any other things returned by your Q network.
if they exist.

act_discrete_with_noise(state, use_target=False, **__)
Use Q network to produce a noisy discrete action for the current state.

Parameters

• state (Dict[str, Any]) – Current state.

• use_target (bool) – Whether to use the target network.

Returns Noisy action of shape [batch_size, 1]. Any other things returned by your Q
network. if they exist.

manual_sync()

set_sync(is_syncing)

update(update_value=True, update_target=True, concatenate_samples=True, **__)
Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether update the Q network.

• update_target – Whether update targets.

• concatenate_samples – Whether concatenate the samples.

Returns mean value of estimated policy value, value loss

IMPALA

class machin.frame.algorithms.impala.EpisodeDistributedBuffer(buffer_name,
group,
buffer_size,
*_, **__)

Bases: machin.frame.buffers.buffer_d.DistributedBuffer

A distributed buffer which stores each episode as a transition object inside the buffer.

Create a distributed replay buffer instance.

To avoid issues caused by tensor device difference, all transition objects are stored in device “cpu”.

Distributed replay buffer constitutes of many local buffers held per process, transmissions between processes
only happen during sampling.

During sampling, the tensors in “state”, “action” and “next_state” dictionaries, along with “reward”, will be
concatenated in dimension 0. any other custom keys specified in **kwargs will not be concatenated.

See also:

Buffer

Note: Since append() operates on the local buffer, in order to append to the distributed buffer correctly,
please make sure that your actor is also the local buffer holder, i.e. a member of the group

Parameters

• buffer_size (int) – Maximum local buffer size.
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• group (machin.parallel.distributed.world.RpcGroup) – Process group
which holds this buffer.

• buffer_name (str) – A unique name of your buffer.

append(transition, required_attrs='state', 'action', 'next_state', 'reward', 'terminal', 'action_log_prob')
Store a transition object to buffer.

Parameters

• transition (Dict) – A transition object.

• required_attrs – Required attributes. Could be an empty tuple if no attribute is
required.

Raises

• ValueError if transition object doesn't have required –

• attributes in required_attrs or has different attributes –

• compared to other transition objects stored in buffer. –

class machin.frame.algorithms.impala.EpisodeTransition(state, action, next_state, re-
ward, terminal, **kwargs)

Bases: machin.frame.transition.Transition

A transition class which allows storing the whole episode as a single transition object, the batch dimension will
be used to stack all transition steps.

Parameters

• state (Dict[str, torch.Tensor]) – Previous observed state.

• action (Dict[str, torch.Tensor]) – Action of agent.

• next_state (Dict[str, torch.Tensor]) – Next observed state.

• reward (Union[float, torch.Tensor]) – Reward of agent.

• terminal (bool) – Whether environment has reached terminal state.

• **kwargs – Custom attributes. They are ordered in the alphabetic order (provided by
sort()) when you call keys().

Note: You should not store any tensor inside **kwargs as they will not be moved to the sample output device.

class machin.frame.algorithms.impala.IMPALA(actor, critic, optimizer, criterion,
impala_group, model_server, *_,
lr_scheduler=None, lr_scheduler_args=(),
lr_scheduler_kwargs=(), batch_size=5,
learning_rate=0.001, isw_clip_c=1.0,
isw_clip_rho=1.0, entropy_weight=None,
value_weight=0.5, gradient_max=inf,
discount=0.99, replay_size=500, visual-
ize=False, **__)

Bases: machin.frame.algorithms.base.TorchFramework

Massively parallel IMPALA framework.

Note: Please make sure isw_clip_rho >= isw_clip_c
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Parameters

• actor (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Actor network module.

• critic (Union[machin.model.nets.base.NeuralNetworkModule,
torch.nn.modules.module.Module]) – Critic network module.

• optimizer (Callable) – Optimizer used to optimize actor and critic.

• criterion (Callable) – Criterion used to evaluate the value loss.

• impala_group (machin.parallel.distributed.world.RpcGroup) –
Group of all processes using the IMPALA framework, including all samplers and trainers.

• model_server (Tuple[machin.parallel.server.param_server.
PushPullModelServer]) – Custom model sync server accessor for actor.

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.

• batch_size (int) – Batch size used during training.

• learning_rate (float) – Learning rate of the optimizer, not compatible with
lr_scheduler.

• isw_clip_c (float) – 𝑐 used in importance weight clipping.

• isw_clip_rho (float) –

• entropy_weight (float) – Weight of entropy in your loss function, a positive entropy
weight will minimize entropy, while a negative one will maximize entropy.

• value_weight (float) – Weight of critic value loss.

• gradient_max (float) – Maximum gradient.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Size of the local replay buffer.

• visualize (bool) – Whether visualize the network flow in the first pass.

act(state, *_, **__)
Use actor network to give a policy to the current state.

Returns Anything produced by actor.

Parameters Any] state (Dict[str,) –

manual_sync()

set_sync(is_syncing)

store_episode(episode)
Add a full episode of transition samples to the replay buffer.

Parameters Dict]] episode (List[Union[machin.frame.transition.
Transition,) –
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store_transition(transition)

Warning: Not supported in IMPALA due to v-trace requirements.

Parameters Dict] transition (Union[machin.frame.transition.
Transition,) –

update(update_value=True, update_policy=True, **__)
Update network weights by sampling from replay buffer.

Note: Will always concatenate samples.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.

MADDPG

class machin.frame.algorithms.maddpg.MADDPG(actors, actor_targets, critics, critic_targets,
critic_visible_actors, optimizer, criterion,
*_, sub_policy_num=0, lr_scheduler=None,
lr_scheduler_args=None,
lr_scheduler_kwargs=None,
batch_size=100, update_rate=0.001,
actor_learning_rate=0.0005,
critic_learning_rate=0.001, discount=0.99,
gradient_max=inf, replay_size=500000, re-
play_device='cpu', replay_buffer=None,
visualize=False, visualize_dir='',
use_jit=True, pool_type='thread',
pool_size=None)

Bases: machin.frame.algorithms.base.TorchFramework

MADDPG is a centralized multi-agent training framework, it alleviates the unstable reward problem caused by
the disturbance of other agents by gathering all agents observations and train a global critic. This global critic
observes all actions and all states from all agents.

See also:

DDPG

Note: In order to parallelize agent inference, a process pool is used internally. However, in order to minimize
memory copy / CUDA memory copy, the location of all of your models must be either “cpu”, or “cuda” (Using
multiple CUDA devices is supported).
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Note: MADDPG framework does not require all of your actors are homogeneous. Each pair of your actors
and critcs could be heterogeneous.

Note: Suppose you have three pair of actors and critics, with index 0, 1, 2. If critic 0 can observe the action of
actor 0 and 1, critic 1 can observe the action of actor 1 and 2, critic 2 can observe the action of actor 2 and 0, the
critic_visible_actors should be:

[[0, 1], [1, 2], [2, 0]]

Note:

This implementation contains:

• Ensemble Training

This implementation does not contain:

• Inferring other agents’ policies

• Mixed continuous/discrete action spaces

Parameters

• actors (List[Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]]) – Actor
network modules.

• actor_targets (List[Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]]) – Target
actor network modules.

• critics (List[Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]]) – Critic
network modules.

• critic_targets (List[Union[machin.model.nets.base.
NeuralNetworkModule, torch.nn.modules.module.Module]]) – Target
critic network modules.

• critic_visible_actors (List[List[int]]) – Indexes of visible actors for each
critic.

• optimizer (Callable) – Optimizer used to optimize actors and critics.

• criterion (Callable) – Criterion used to evaluate the value loss.

• sub_policy_num (int) – Times to replicate each actor. Equals to ensemble_policy_num
- 1

• lr_scheduler (Callable) – Learning rate scheduler of optimizer.

• lr_scheduler_args (Tuple[Tuple, Tuple]) – Arguments of the learning rate
scheduler.

• lr_scheduler_kwargs (Tuple[Dict, Dict]) – Keyword arguments of the learn-
ing rate scheduler.
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• batch_size (int) – Batch size used during training.

• update_rate (float) – 𝜏 used to update target networks. Target parameters are updated
as: 𝜃𝑡 = 𝜃 * 𝜏 + 𝜃𝑡 * (1 − 𝜏)

• actor_learning_rate (float) – Learning rate of the actor optimizer, not compatible
with lr_scheduler.

• critic_learning_rate (float) – Learning rate of the critic optimizer, not compat-
ible with lr_scheduler.

• discount (float) – 𝛾 used in the bellman function.

• replay_size (int) – Replay buffer size for each actor. Not compatible with
replay_buffer.

• replay_device (Union[str, torch.device]) – Device where the replay buffer
locates on, Not compatible with replay_buffer.

• replay_buffer (machin.frame.buffers.buffer.Buffer) – Custom replay
buffer. Will be replicated for actor.

• visualize (bool) – Whether visualize the network flow in the first pass.

• visualize_dir (str) – Visualized graph save directory.

• use_jit (bool) – Whether use torch jit to perform the forward pass in parallel instead
of using the internal pool. Provides significant speed and efficiency advantage, but requires
actors and critics convertible to TorchScript.

• pool_type (str) – Type of the internal execution pool, either “process” or “thread”.

• pool_size (int) – Size of the internal execution pool.

• gradient_max (float) –

act(states, use_target=False, **__)
Use all actor networks to produce actions for the current state. A random sub-policy from the policy
ensemble of each actor will be chosen.

Parameters

• states (List[Dict[str, Any]]) – A list of current states of each actor.

• use_target (bool) – Whether use the target network.

Returns A list of anything returned by your actor. If your actor returns multiple values, they
will be wrapped in a tuple.

act_discrete(states, use_target=False)
Use all actor networks to produce discrete actions for the current state. A random sub-policy from the
policy ensemble of each actor will be chosen.

102 Chapter 4. API



Machin, Release 0.3.4

Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• states (List[Dict[str, Any]]) – A list of current states of each actor.

• use_target (bool) – Whether use the target network.

Returns

1. Integer discrete actions of shape [batch_size, 1].

2. Action probability tensors of shape [batch_size, action_num].

3. Any other things returned by your actor.

Return type A list of tuples containing

act_discrete_with_noise(states, use_target=False)
Use all actor networks to produce discrete actions for the current state. A random sub-policy from the
policy ensemble of each actor will be chosen.

Notes

actor network must output a probability tensor, of shape (batch_size, action_dims), and has a sum of 1 for
each row in dimension 1.

Parameters

• states (List[Dict[str, Any]]) – A list of current states of each actor.

• use_target (bool) – Whether use the target network.

Returns

1. Integer noisy discrete actions.

2. Action probability tensors of shape [batch_size, action_num].

3. Any other things returned by your actor.

Return type A list of tuples containing

act_with_noise(states, noise_param=0.0, 1.0, ratio=1.0, mode='uniform', use_target=False, **__)
Use all actor networks to produce noisy actions for the current state. A random sub-policy from the policy
ensemble of each actor will be chosen.

See also:

machin.frame.noise.action_space_noise

Parameters

• states (List[Dict[str, Any]]) – A list of current states of each actor.

• noise_param (Any) – Noise params.

• ratio (float) – Noise ratio.

• mode (str) – Noise mode. Supported are: "uniform", "normal",
"clipped_normal", "ou"

• use_target (bool) – Whether use the target network.
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Returns A list of noisy actions of shape [batch_size, action_dim].

static action_concat_function(actions, *_)

Parameters actions (List[Dict]) –

static action_transform_function(raw_output_action, *_)

Parameters raw_output_action (Any) –

load(model_dir, network_map=None, version=- 1)
Load models.

An example of network map:

{"restorable_model_1": "file_name_1",
"restorable_model_2": "file_name_2"}

Get keys by calling <Class name>.get_restorable()

Parameters

• model_dir – Save directory.

• network_map – Key is module name, value is saved name.

• version – Version number of the save to be loaded.

static reward_function(reward, discount, next_value, terminal, *_)

static state_concat_function(states, *_)

Parameters states (List[Dict]) –

store_episodes(episodes)
Add a List of full episodes, from all actors, to the replay buffers. Each episode is a list of transition
samples.

Parameters Dict]]] episodes (List[List[Union[machin.frame.
transition.Transition,) –

store_transitions(transitions)
Add a list of transition samples, from all actors at the same time step, to the replay buffers.

Parameters transitions (List[Union[machin.frame.transition.
Transition, Dict]]) – List of transition objects.

update(update_value=True, update_policy=True, update_target=True, concatenate_samples=True)
Update network weights by sampling from replay buffer.

Parameters

• update_value – Whether to update the Q network.

• update_policy – Whether to update the actor network.

• update_target – Whether to update targets.

• concatenate_samples – Whether to concatenate the samples.

Returns mean value of estimated policy value, value loss

update_lr_scheduler()
Update learning rate schedulers.
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class machin.frame.algorithms.maddpg.SHMBuffer(buffer_size, buffer_device='cpu', *_,
**__)

Bases: machin.frame.buffers.buffer.Buffer

Create a buffer instance.

Buffer stores a series of transition objects and functions as a ring buffer. It is not thread-safe.

See also:

Transition

During sampling, the tensors in “state”, “action” and “next_state” dictionaries, along with “reward”, will be
concatenated in dimension 0. any other custom keys specified in **kwargs will not be concatenated.

Parameters

• buffer_size – Maximum buffer size.

• buffer_device – Device where buffer is stored.

static make_tensor_from_batch(batch, device, concatenate)
Make a tensor from a batch of data. Will concatenate input tensors in dimension 0. Or create a tensor of
size (batch_size, 1) for scalars.

Parameters

• batch – Batch data.

• device – Device to move data to

• concatenate – Whether performing concatenation.

Returns Original batch if batch is empty, or tensor depends on your data (if concatenate), or
original batch (if not concatenate).

buffers

Buffer

class machin.frame.buffers.buffer.Buffer(buffer_size, buffer_device='cpu', *_, **__)
Bases: object

Create a buffer instance.

Buffer stores a series of transition objects and functions as a ring buffer. It is not thread-safe.

See also:

Transition

During sampling, the tensors in “state”, “action” and “next_state” dictionaries, along with “reward”, will be
concatenated in dimension 0. any other custom keys specified in **kwargs will not be concatenated.

Parameters

• buffer_size – Maximum buffer size.

• buffer_device – Device where buffer is stored.

append(transition, required_attrs='state', 'action', 'next_state', 'reward', 'terminal')
Store a transition object to buffer.

Parameters
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• transition (Union[machin.frame.transition.Transition, Dict]) –
A transition object.

• required_attrs – Required attributes. Could be an empty tuple if no attribute is
required.

Raises

• ValueError if transition object doesn't have required –

• attributes in required_attrs or has different attributes –

• compared to other transition objects stored in buffer. –

clear()
Remove all entries from the buffer

static make_tensor_from_batch(batch, device, concatenate)
Make a tensor from a batch of data. Will concatenate input tensors in dimension 0. Or create a tensor of
size (batch_size, 1) for scalars.

Parameters

• batch (List[Union[NewType.<locals>.new_type, torch.Tensor]]) –
Batch data.

• device (Union[str, torch.device]) – Device to move data to

• concatenate (bool) – Whether performing concatenation.

Returns Original batch if batch is empty, or tensor depends on your data (if concatenate), or
original batch (if not concatenate).

classmethod post_process_batch(batch, device, concatenate, sample_attrs, addi-
tional_concat_attrs)

Post-process (concatenate) sampled batch.

Parameters

• batch (List[machin.frame.transition.Transition]) –

• torch.device] device (Union[str,) –

• concatenate (bool) –

• sample_attrs (List[str]) –

• additional_concat_attrs (List[str]) –

sample_batch(batch_size, concatenate=True, device=None, sample_method='random_unique', sam-
ple_attrs=None, additional_concat_attrs=None, *_, **__)

Sample a random batch from buffer.

See also:

Default sample methods are defined as static class methods.

Buffer.sample_method_random_unique()

Buffer.sample_method_random()

Buffer.sample_method_all()

Note: “Concatenation” means torch.cat([...], dim=0) for tensors, and torch.tensor([.
..]).view(batch_size, 1) for scalars.
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Warning: Custom attributes must not contain tensors. And only scalar custom attributes can be
concatenated, such as int, float, bool.

Parameters

• batch_size (int) – A hint size of the result sample. actual sample size depends on
your sample method.

• sample_method (Union[Callable, str]) – Sample method, could be one
of: "random", "random_unique", "all", or a function: func(list,
batch_size)->(list, result_size)

• concatenate (bool) – Whether concatenate state, action and next_state in di-
mension 0. If True, for each value in dictionaries of major attributes. and each
value of sub attributes, returns a concatenated tensor. Custom Attributes specified in
additional_concat_attrs will also be concatenated. If False, return a list of
tensors.

• device (Union[str, torch.device]) – Device to copy to.

• sample_attrs (List[str]) – If sample_keys is specified, then only specified keys
of the transition object will be sampled. You may use "*" as a wildcard to collect remain-
ing custom keys as a dict, you cannot collect major and sub attributes using this. Invalid
sample attributes will be ignored.

• additional_concat_attrs (List[str]) – additional custom keys needed to be
concatenated, will only work if concatenate is True.

Returns

1. Batch size, Sampled attribute values in the same order as sample_keys.

2. Sampled attribute values is a tuple. Or None if sampled batch size is zero (E.g.: if buffer
is empty or your sample size is 0 and you are not sampling using the “all” method).

• For major attributes, result are dictionaries of tensors with the same keys in your transi-
tion objects.

• For sub attributes, result are tensors.

• For custom attributes, if they are not in additional_concat_attrs, then lists,
otherwise tensors.

Return type Any

static sample_method_all(buffer, _)
Sample all samples from buffer. Always return the whole buffer, will ignore the batch_size parameter.

Parameters buffer (List[machin.frame.transition.Transition]) –

Return type Tuple[int, List[machin.frame.transition.Transition]]

static sample_method_random(buffer, batch_size)
Sample random samples from buffer.

Note: Sampled size could be any value from 0 to batch_size.

Parameters
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• buffer (List[machin.frame.transition.Transition]) –

• batch_size (int) –

Return type Tuple[int, List[machin.frame.transition.Transition]]

static sample_method_random_unique(buffer, batch_size)
Sample unique random samples from buffer.

Note: Sampled size could be any value from 0 to batch_size.

Parameters

• buffer (List[machin.frame.transition.Transition]) –

• batch_size (int) –

Return type Tuple[int, List[machin.frame.transition.Transition]]

size()

Returns Length of current buffer.

Distributed buffer

class machin.frame.buffers.buffer_d.DistributedBuffer(buffer_name, group,
buffer_size, *_, **__)

Bases: machin.frame.buffers.buffer.Buffer

Create a distributed replay buffer instance.

To avoid issues caused by tensor device difference, all transition objects are stored in device “cpu”.

Distributed replay buffer constitutes of many local buffers held per process, transmissions between processes
only happen during sampling.

During sampling, the tensors in “state”, “action” and “next_state” dictionaries, along with “reward”, will be
concatenated in dimension 0. any other custom keys specified in **kwargs will not be concatenated.

See also:

Buffer

Note: Since append() operates on the local buffer, in order to append to the distributed buffer correctly,
please make sure that your actor is also the local buffer holder, i.e. a member of the group

Parameters

• buffer_size (int) – Maximum local buffer size.

• group (machin.parallel.distributed.world.RpcGroup) – Process group
which holds this buffer.

• buffer_name (str) – A unique name of your buffer.

all_clear()
Remove all entries from all local buffers.
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all_size()

Returns Total length of all buffers.

append(transition, required_attrs='state', 'action', 'next_state', 'reward', 'terminal')
Store a transition object to buffer.

Parameters

• transition (Union[machin.frame.transition.Transition, Dict]) –
A transition object.

• required_attrs – Required attributes. Could be an empty tuple if no attribute is
required.

Raises

• ValueError if transition object doesn't have required –

• attributes in required_attrs or has different attributes –

• compared to other transition objects stored in buffer. –

clear()
Clear current local buffer.

sample_batch(batch_size, concatenate=True, device=None, sample_method='random_unique', sam-
ple_attrs=None, additional_concat_attrs=None, *_, **__)

Sample a random batch from buffer.

See also:

Default sample methods are defined as static class methods.

Buffer.sample_method_random_unique()

Buffer.sample_method_random()

Buffer.sample_method_all()

Note: “Concatenation” means torch.cat([...], dim=0) for tensors, and torch.tensor([.
..]).view(batch_size, 1) for scalars.

Warning: Custom attributes must not contain tensors. And only scalar custom attributes can be
concatenated, such as int, float, bool.

Parameters

• batch_size (int) – A hint size of the result sample. actual sample size depends on
your sample method.

• sample_method (Union[Callable, str]) – Sample method, could be one
of: "random", "random_unique", "all", or a function: func(list,
batch_size)->(list, result_size)

• concatenate (bool) – Whether concatenate state, action and next_state in di-
mension 0. If True, for each value in dictionaries of major attributes. and each
value of sub attributes, returns a concatenated tensor. Custom Attributes specified in
additional_concat_attrs will also be concatenated. If False, return a list of
tensors.
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• device (Union[str, torch.device]) – Device to copy to.

• sample_attrs (List[str]) – If sample_keys is specified, then only specified keys
of the transition object will be sampled. You may use "*" as a wildcard to collect remain-
ing custom keys as a dict, you cannot collect major and sub attributes using this. Invalid
sample attributes will be ignored.

• additional_concat_attrs (List[str]) – additional custom keys needed to be
concatenated, will only work if concatenate is True.

Returns

1. Batch size, Sampled attribute values in the same order as sample_keys.

2. Sampled attribute values is a tuple. Or None if sampled batch size is zero (E.g.: if buffer
is empty or your sample size is 0 and you are not sampling using the “all” method).

• For major attributes, result are dictionaries of tensors with the same keys in your transi-
tion objects.

• For sub attributes, result are tensors.

• For custom attributes, if they are not in additional_concat_attrs, then lists,
otherwise tensors.

Return type Any

size()

Returns Length of current local buffer.

Prioritized buffer

class machin.frame.buffers.prioritized_buffer.PrioritizedBuffer(buffer_size,
buffer_device='cpu',
epsilon=0.01,
alpha=0.6,
beta=0.4,
beta_increment_per_sampling=0.001,
*_, **__)

Bases: machin.frame.buffers.buffer.Buffer

Parameters

• buffer_size – Maximum buffer size.

• buffer_device – Device where buffer is stored.

• epsilon – A small positive constant used to prevent edge-case zero weight transitions
from never being visited.

• alpha – Prioritization weight. Used during transition sampling: 𝑗 ∼ 𝑃 (𝑗) = 𝑝𝛼𝑗 /
∑︀

𝑖 𝑝
𝛼
𝑖 .

When alpha = 0, all samples have the same probability to be sampled. When alpha =
1, all samples are drawn uniformly according to their weight.

• beta – Bias correcting weight. When beta = 1, bias introduced by prioritized replay
will be corrected. Used during importance weight calculation: 𝑤𝑗 = (𝑁 ·𝑃 (𝑗))−𝛽/𝑚𝑎𝑥𝑖𝑤𝑖

• beta_increment_per_sampling – Beta increase step size, will gradually increase
beta to 1.
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append(transition, priority=None, required_attrs='state', 'action', 'next_state', 'reward', 'terminal')
Store a transition object to buffer.

Parameters

• transition (Union[machin.frame.transition.Transition, Dict]) –
A transition object.

• priority (Optional[float]) – Priority of transition.

• required_attrs – Required attributes.

clear()
Clear and resets the buffer to its initial state.

sample_batch(batch_size, concatenate=True, device=None, sample_attrs=None, addi-
tional_concat_attrs=None, *_, **__)

Sample the most important batch from the prioritized buffer.

See also:

Buffer.sample_batch()

Parameters

• batch_size (int) – A hint size of the result sample.

• concatenate (bool) – Whether concatenate state, action and next_state in di-
mension 0. If True, for each value in dictionaries of major attributes. and each
value of sub attributes, returns a concatenated tensor. Custom Attributes specified in
additional_concat_attrs will also be concatenated. If False, return a list of
tensors.

• device (Union[str, torch.device]) – Device to copy to.

• sample_attrs (List[str]) – If sample_keys is specified, then only specified keys
of the transition object will be sampled. You may use "*" as a wildcard to collect remain-
ing keys.

• additional_concat_attrs (List[str]) – additional custom keys needed to be
concatenated,

Returns

1. Batch size.

2. Sampled attribute values in the same order as sample_keys.

Sampled attribute values is a tuple. Or None if sampled batch size is zero (E.g.: if buffer
is empty or your sample size is 0).

3. Indexes of samples in the weight tree, np.ndarray. Or None if sampled batch size is
zero

4. Importance sampling weight of samples, np.ndarray. Or None if sampled batch size
is zero

Return type Any

size()

Returns Length of current buffer.

update_priority(priorities, indexes)
Update priorities of samples.
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Parameters

• priorities (numpy.ndarray) – New priorities.

• indexes (numpy.ndarray) – Indexes of samples, returned by sample_batch()

Weight tree

class machin.frame.buffers.prioritized_buffer.WeightTree(size)
Bases: object

Sum weight tree data structure.

Initialize a weight tree.

Note: Weights must be positive.

Note: Weight tree is stored as a flattened, full binary tree in a np.ndarray. The lowest level of leaves comes
first, the highest root node is stored at last.

Example:

Tree with weights: [[1, 2, 3, 4], [3, 7], [11]]

will be stored as: [1, 2, 3, 4, 3, 7, 11]

Note: Performance On i7-6700HQ (M: Million):

90ms for building a tree with 10M elements.

230ms for looking up 10M elements in a tree with 10M elements.

20ms for 1M element batched update in a tree with 10M elements.

240ms for 1M element single update in a tree with 10M elements.

Parameters size – Number of weight tree leaves.

find_leaf_index(weight)
Find leaf indexes given weight. Weight must be in range [0, 𝑤𝑒𝑖𝑔ℎ𝑡_𝑠𝑢𝑚]

Parameters weight (Union[float, List[float], numpy.ndarray]) –
Weight(s) used to query leaf index(es).

Returns Leaf index(es), if weight is scalar, returns int, if not, returns np.ndarray.

get_leaf_all_weights()

Returns Current weights of all leaves, np.ndarray of shape (size).

Return type numpy.ndarray

get_leaf_max()

Returns Current maximum leaf weight.

Return type float
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get_leaf_weight(index)
Get weights of selected leaves.

Parameters index (Union[int, List[int], numpy.ndarray]) – Leaf indexes in
range [0, size - 1], used to query weights.

Returns Current weight(s) of selected leaves. If index is scalar, returns float, if not, returns
np.ndarray.

Return type Any

get_weight_sum()

Returns Total weight sum.

Return type float

print_weights(precision=2)
Pretty print the tree, for debug purpose.

Parameters precision – Number of digits of weights to print.

update_all_leaves(weights)
Reset all leaf weights, rebuild weight tree from ground up.

Parameters weights (Union[List[float], numpy.ndarray]) – All leaf weights.
List or array length should be in range [0, size].

update_leaf(weight, index)
Update a single weight tree leaf.

Parameters

• weight (float) – New weight of the leaf.

• index (int) – Leaf index to update, must be in range [0, size - 1].

update_leaf_batch(weights, indexes)
Update weight tree leaves in batch.

Parameters

• weights (Union[List[float], numpy.ndarray]) – New weights of leaves.

• indexes (Union[List[int], numpy.ndarray]) – Leaf indexes to update,
must be in range [0, size - 1].

Distributed prioritized buffer

class machin.frame.buffers.prioritized_buffer_d.DistributedPrioritizedBuffer(buffer_name,
group,
buffer_size,
*_,
**__)

Bases: machin.frame.buffers.prioritized_buffer.PrioritizedBuffer

Create a distributed prioritized replay buffer instance.

To avoid issues caused by tensor device difference, all transition objects are stored in device “cpu”.

Distributed prioritized replay buffer constitutes of many local buffers held per process, since it is very inefficient
to maintain a weight tree across processes, each process holds a weight tree of records in its local buffer and a
local buffer (same as DistributedBuffer).
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The sampling process(es) will first use rpc to acquire the wr_lock, signalling “stop” to appending performed by
actor processes, then perform a sum of all local weight trees, and finally perform sampling, after sampling and
updating the importance weight, the lock will be released.

During sampling, the tensors in “state”, “action” and “next_state” dictionaries, along with “reward”, will be
concatenated in dimension 0. any other custom keys specified in **kwargs will not be concatenated.

See also:

PrioritizedBuffer

Note: DistributedPrioritizedBuffer is not split into an accessor and an implementation, because
we would like to operate on the buffer directly, when calling “size()” or “append()”, to increase efficiency (since
rpc layer is bypassed).

Parameters

• buffer_size (int) – Maximum local buffer size.

• group (machin.parallel.distributed.world.RpcGroup) – Process group
which holds this buffer.

• buffer_name (str) –

all_clear()
Remove all entries from all local buffers.

all_size()

Returns Total length of all buffers.

append(transition, priority=None, required_attrs='state', 'action', 'next_state', 'reward', 'terminal')
Store a transition object to buffer.

Parameters

• transition (Union[machin.frame.transition.Transition, Dict]) –
A transition object.

• priority (Optional[float]) – Priority of transition.

• required_attrs – Required attributes.

clear()
Remove all entries from current local buffer.

sample_batch(batch_size, concatenate=True, device=None, sample_attrs=None, addi-
tional_concat_attrs=None, *_, **__)

Sample the most important batch from the prioritized buffer.

See also:

Buffer.sample_batch()

Parameters

• batch_size (int) – A hint size of the result sample.

• concatenate (bool) – Whether concatenate state, action and next_state in di-
mension 0. If True, for each value in dictionaries of major attributes. and each
value of sub attributes, returns a concatenated tensor. Custom Attributes specified in
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additional_concat_attrs will also be concatenated. If False, return a list of
tensors.

• device (Union[str, torch.device]) – Device to copy to.

• sample_attrs (List[str]) – If sample_keys is specified, then only specified keys
of the transition object will be sampled. You may use "*" as a wildcard to collect remain-
ing keys.

• additional_concat_attrs (List[str]) – additional custom keys needed to be
concatenated,

Returns

1. Batch size.

2. Sampled attribute values in the same order as sample_keys.

Sampled attribute values is a tuple. Or None if sampled batch size is zero (E.g.: if buffer
is empty or your sample size is 0).

3. Indexes of samples in the weight tree, np.ndarray. Or None if sampled batch size is
zero

4. Importance sampling weight of samples, np.ndarray. Or None if sampled batch size
is zero

Return type Any

size()

Returns Length of current local buffer.

update_priority(priorities, indexes)
Update priorities of samples.

Parameters

• priorities (numpy.ndarray) – New priorities.

• indexes (collections.OrderedDict) – Indexes of samples, returned by
sample_batch()

noise

action_space_noise

machin.frame.noise.action_space_noise.add_clipped_normal_noise_to_action(action,
noise_param=0.0,
1.0,
-
1.0,
1.0,
ra-
tio=1.0)

Add clipped normal noise to action tensor.

Hint: The innermost tuple contains: (normal_mean, normal_sigma, clip_min, clip_max)

If noise_param is Tuple[float, float, float, float], then the same clipped normal noise will
be added to action[*, :].
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If noise_param is Iterable[Tuple[float, float, float, float]], then for each
action[*, i] slice i, clipped normal noise with noise_param[i] will be applied respectively.

Parameters

• action (torch.Tensor) – Raw action

• noise_param (Union[Iterable[Tuple], Tuple]) – Param of the normal noise.

• ratio – Sampled noise is multiplied with this ratio.

Returns Action with uniform noise.

machin.frame.noise.action_space_noise.add_normal_noise_to_action(action,
noise_param=0.0,
1.0, ra-
tio=1.0)

Add normal noise to action tensor.

Hint: The innermost tuple contains: (normal_mean, normal_sigma)

If noise_param is Tuple[float, float], then the same normal noise will be added to action[*,
:].

If noise_param is Iterable[Tuple[float, float]], then for each action[*, i] slice i,
clipped normal noise with noise_param[i] will be applied respectively.

Parameters

• action (torch.Tensor) – Raw action

• noise_param – Param of the normal noise.

• ratio – Sampled noise is multiplied with this ratio.

Returns Action with normal noise.

machin.frame.noise.action_space_noise.add_ou_noise_to_action(action,
noise_param=None,
ratio=1.0, re-
set=False)

Add Ornstein-Uhlenbeck noise to action tensor.

Warning: Ornstein-Uhlenbeck noise generator is shared. And you cannot specify OU noise of different
distributions for each of the last dimension of your action.

Parameters

• action (torch.Tensor) – Raw action

• noise_param (Dict[str, Any]) – OrnsteinUhlenbeckGen params. Used as
keyword arguments of the generator. Will only be effective if reset is True.

• ratio – Sampled noise is multiplied with this ratio.

• reset – Whether to reset the default Ornstein-Uhlenbeck noise generator.

Returns Action with Ornstein-Uhlenbeck noise.
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machin.frame.noise.action_space_noise.add_uniform_noise_to_action(action,
noise_param=0.0,
1.0, ra-
tio=1.0)

Add uniform noise to action tensor.

Hint: The innermost tuple contains: (uniform_min, uniform_max)

If noise_param is Tuple[float, float], then the same uniform noise will be added to action[*,
:].

If noise_param is Iterable[Tuple[float, float]], then for each action[*, i] slice i, uni-
form noise with noise_param[i] will be added respectively.

Parameters

• action (torch.Tensor) – Raw action.

• noise_param (Union[Iterable[Tuple], Tuple]) – Param of the uniform
noise.

• ratio (float) – Sampled noise is multiplied with this ratio.

Returns Action with uniform noise.

generator

class machin.frame.noise.generator.ClippedNormalNoiseGen(shape, mu=0.0,
sigma=1.0, nmin=-
1.0, nmax=1.0)

Bases: machin.frame.noise.generator.NoiseGen

Normal noise generator.

Example

>>> gen = NormalNoiseGen([2, 3], 0, 1)
>>> gen("cuda:0")
tensor([[-0.5957, 0.2360, 1.0999],

[ 1.6259, 1.2052, -0.0667]], device="cuda:0")

Parameters

• shape (Any) – Output shape.

• mu (float) – Average mean of normal noise.

• sigma (float) – Standard deviation of normal noise.

• nmin (float) –

• nmax (float) –

class machin.frame.noise.generator.NoiseGen
Bases: abc.ABC

Base class for noise generators.
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reset()
Reset internal states of the noise generator, if it has any.

class machin.frame.noise.generator.NormalNoiseGen(shape, mu=0.0, sigma=1.0)
Bases: machin.frame.noise.generator.NoiseGen

Normal noise generator.

Example

>>> gen = NormalNoiseGen([2, 3], 0, 1)
>>> gen("cuda:0")
tensor([[-0.5957, 0.2360, 1.0999],

[ 1.6259, 1.2052, -0.0667]], device="cuda:0")

Parameters

• shape (Any) – Output shape.

• mu (float) – Average mean of normal noise.

• sigma (float) – Standard deviation of normal noise.

class machin.frame.noise.generator.OrnsteinUhlenbeckNoiseGen(shape, mu=0.0,
sigma=1.0,
theta=0.15,
dt=0.01,
x0=None)

Bases: machin.frame.noise.generator.NoiseGen

Ornstein-Uhlenbeck noise generator. Based on definition:

𝑋𝑛+1 = 𝑋𝑛 + 𝜃(𝜇−𝑋𝑛)∆𝑡 + 𝜎∆𝑊𝑛

Example

>>> gen = OrnsteinUhlenbeckNoiseGen([2, 3], 0, 1)
>>> gen("cuda:0")
tensor([[ 0.1829, 0.1589, -0.1932],

[-0.1568, 0.0579, 0.2107]], device="cuda:0")
>>> gen.reset()

Parameters

• shape (Any) – Output shape.

• mu (float) – Average mean of noise.

• sigma (float) – Weight of the random wiener process.

• theta (float) – Weight of difference correction.

• dt (float) – Time step size.

• x0 (torch.Tensor) – Initial x value. Must have the same shape as shape.

reset()
Reset the generator to its initial state.
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class machin.frame.noise.generator.UniformNoiseGen(shape, umin=0.0, umax=1.0)
Bases: machin.frame.noise.generator.NoiseGen

Normal noise generator.

Example

>>> gen = UniformNoiseGen([2, 3], 0, 1)
>>> gen("cuda:0")
tensor([[0.0745, 0.6581, 0.9572],

[0.4450, 0.8157, 0.6421]], device="cuda:0")

Parameters

• shape (Any) – Output shape.

• umin (float) – Minimum value of uniform noise.

• umax (float) – Maximum value of uniform noise.

param_space_noise

class machin.frame.noise.param_space_noise.AdaptiveParamNoise(initial_stddev=0.1,
de-
sired_action_stddev=0.1,
adop-
tion_coefficient=1.01)

Bases: object

Implements the adaptive parameter space method in <<Parameter space noise for exploration>>.

Hint: Let 𝜃 be the standard deviation of noise, and 𝛼 be the adpotion coefficient, then:

𝜃𝑛+1 =

{︂
𝛼𝜃𝑘 𝑖𝑓 𝑑(𝜋, 𝜋̃) ≤ 𝛿,
1
𝛼𝜃𝑘 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

Noise is directly applied to network parameters.

Parameters

• initial_stddev (float) – Initial noise standard deviation.

• desired_action_stddev (float) – Desired standard deviation for

• adoption_coefficient (float) – Adoption coefficient.

adapt(distance)
Update noise standard deviation according to distance.

Parameters distance (float) – Current distance between the noisy action and clean action.

get_dev()

Returns Current noise standard deviation.

Return type float
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machin.frame.noise.param_space_noise.perturb_model(model, perturb_switch,
reset_switch, dis-
tance_func=<function
<lambda>>, de-
sired_action_stddev=0.5,
noise_generator=<class
'machin.frame.noise.generator.NormalNoiseGen'>,
noise_generator_args=(),
noise_generator_kwargs=None,
noise_generate_function=None,
debug_backward=False)

Give model’s parameters a little perturbation. Implements <<Parameter space noise for exploration>>.

Note: Only parameters of type t.Tensor and gettable from model.named_parameters() will be
perturbed.

Original parameters will be automatically swapped in during the backward pass, and you can safely call opti-
mizers afterwards.

Hint: 1. noise_generator must accept (shape, *args) in its __init__ function, where shape is the re-
quired shape. it also needs to have __call__(device=None) which produce a noise tensor on the specified
device when invoked.

2. noise_generate_function must accept (shape, device, std:float) and return a noise tensor on the
specified device.

Example

In order to use this function to perturb your model, you need to:

from machin.utils.helper_classes import Switch
from machin.frame.noise.param_space_noise import perturb_model
from machin.utils.visualize import visualize_graph
import torch as t

dims = 5

t.manual_seed(0)
model = t.nn.Linear(dims, dims)
optim = t.optim.Adam(model.parameters(), 1e-3)
p_switch, r_switch = Switch(), Switch()
cancel = perturb_model(model, p_switch, r_switch)

# you should keep this switch on if you do one training step after
# every sampling step. otherwise you may turn it off in one episode
# and turn it on in the next to speed up training.
r_switch.on()

# turn off/on the perturbation switch to see the difference
p_switch.on()

# do some sampling
action = model(t.ones([dims]))

(continues on next page)
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(continued from previous page)

# in order to let parameter noise adapt to generate noisy actions
# within ``desired_action_stddev``, you must periodically
# use the original model to generate some actions:
p_switch.off()
action = model(t.ones([dims]))

# visualize will not show any leaf noise tensors
# because they are created in t.no_grad() context
# and added in-place.
visualize_graph(action, exit_after_vis=False)

# do some training
loss = (action - t.ones([dims])).sum()
loss.backward()
optim.step()
print(model.weight)

# clear hooks
cancel()

Parameters

• model (torch.nn.modules.module.Module) – Neural network model.

• perturb_switch (machin.utils.helper_classes.Switch) – The switch
used to enable perturbation. If switch is set to False (off), then during the forward process,
original parameters are used.

• reset_switch (machin.utils.helper_classes.Switch) – The switch used
to reset perturbation noise. If switch is set to True (on), and perturb_switch is also
on, then during every forward process, a new set of noise is applied to each param. If only
perturb_switch is on, then the same set of noisy parameters is used in the forward
process and they will not be updated.

• distance_func (Callable) – Distance function, accepts two tensors produced by
model (one is noisy), return the distance as float. Used to compare the distance between
actions generated by noisy parameters and original parameters.

• desired_action_stddev (float) – Desired action standard deviation.

• noise_generator (Any) – Noise generator class.

• noise_generator_args (Tuple) – Additional args other than shape of the noise gen-
erator.

• noise_generator_kwargs (Dict) – Additional kwargs other than shape of the noise
generator.

• noise_generate_function (Callable) – Noise generation function, mutually ex-
clusive with noise_generator and noise_generator_args.

• debug_backward – Print a message if the backward hook is correctly executed.

Returns

1. A reset function with no arguments, will swap in original paramters.

2. A deregister function with no arguments, will deregister all hooks applied on your
model.
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transition

class machin.frame.transition.Transition(state, action, next_state, reward, terminal,
**kwargs)

Bases: machin.frame.transition.TransitionBase

The default Transition class.

Have three main attributes: state, action and next_state.

Have two sub attributes: reward and terminal.

Store one transition step of one agent.

Parameters

• state (Dict[str, torch.Tensor]) – Previous observed state.

• action (Dict[str, torch.Tensor]) – Action of agent.

• next_state (Dict[str, torch.Tensor]) – Next observed state.

• reward (Union[float, torch.Tensor]) – Reward of agent.

• terminal (bool) – Whether environment has reached terminal state.

• **kwargs – Custom attributes. They are ordered in the alphabetic order (provided by
sort()) when you call keys().

Note: You should not store any tensor inside **kwargs as they will not be moved to the sample output device.

action = None

next_state = None

reward = None

state = None

terminal = None

class machin.frame.transition.TransitionBase(major_attr, sub_attr, custom_attr, ma-
jor_data, sub_data, custom_data)

Bases: object

Base class for all transitions

Note: Major attributes store things like state, action, next_states, etc. They are usually concatenated by their
dictionary keys during sampling, and passed as keyword arguments to actors, critics, etc.

Sub attributes store things like terminal states, reward, etc. They are usually concatenated directly during
sampling, and used in different algorithms.

Custom attributes store not concatenatable values, usually user specified states, used in models or as special
arguments in different algorithms. They will be collected together as a list during sampling, no further con-
catenation is performed.

Parameters

• major_attr (Iterable[str]) – A list of major attribute names.

• sub_attr (Iterable[str]) – A list of sub attribute names.
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• custom_attr (Iterable[str]) – A list of custom attribute names.

• major_data (Iterable[Dict[str, torch.Tensor]]) – Data of major at-
tributes.

• sub_data (Iterable[Union[NewType.<locals>.new_type, torch.
Tensor]]) – Data of sub attributes.

• custom_data (Iterable[Any]) – Data of custom attributes.

has_keys(keys)

Parameters keys (Iterable[str]) – A list of keys

Returns A bool indicating whether current transition object contains all specified keys.

items()

Returns All attribute values in current transition object.

keys()

Returns All attribute names in current transition object. Ordered in: “major_attrs, sub_attrs,
custom_attrs”

to(device)
Move current transition object to another device. will be a no-op if it already locates on that device.

Parameters device (Union[str, torch.device]) – A valid pytorch device.

Returns Self.

property custom_attr

property major_attr

property sub_attr

class machin.frame.transition.TransitionStorageBasic(max_size)
Bases: list

TransitionStorageBasic is a linear, size-capped chunk of memory for transitions, it makes sure that every stored
transition is copied, and isolated from the passed in transition object.

Parameters max_size – Maximum size of the transition storage.

clear()
Remove all items from list.

store(transition)

Parameters transition (machin.frame.transition.TransitionBase) – Tran-
sition object to be stored

Returns The position where transition is inserted.

Return type int

class machin.frame.transition.TransitionStorageSmart(max_size)
Bases: machin.frame.transition.TransitionStorageBasic

TransitionStorageSmart is a smarter, but (potentially) slower storage class for transitions, but in many cases it is
as fast as the basic storage and halves memory usage because it only deep copies half of the states.

TransitionStorageSmart will compare the major attributes of the current stored transition object with that of the
last stored transition object. And set them to refer to the same tensor.
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Sub attributes and custom attributes will be direcly copied.

Args: max_size: Maximum size of the transition storage.

clear()
Remove all items from list.

store(transition)

Parameters transition (machin.frame.transition.TransitionBase) – Tran-
sition object to be stored

Returns The position where transition is inserted.

Return type int

4.1.3 machin.model

nets

machin.model.nets provides implementations for various popular network architectures.

class machin.model.nets.NeuralNetworkModule
Bases: torch.nn.modules.module.Module, abc.ABC

Note: input device and output device are determined by module parameters, your input module / output
submodule should not store parameters on more than one device, and you also should not move your
output to other devices other than your parameter storage device in forward().

Initializes internal Module state, shared by both nn.Module and ScriptModule.

set_input_module(input_module)
Set the input submodule of current module.

Parameters input_module (torch.nn.modules.module.Module) –

set_output_module(output_module)
Set the output submodule of current module.

Parameters output_module (torch.nn.modules.module.Module) –

property input_device

property output_device

static find_child(seq, is_first=True)
Find the first / last leaf child module.

forward(*_)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

training = None
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machin.model.nets.dynamic_module_wrapper(wrapped_module)
Wrapped module must locate on one single device, but could be moved around.

Input device and output device are automatically detected.

Parameters wrapped_module (torch.nn.modules.module.Module) –

machin.model.nets.static_module_wrapper(wrapped_module, input_device, output_device)
Wrapped module could locate on multiple devices, but must not be moved.

Input device and output device are statically specified by user.

Parameters

• wrapped_module (torch.nn.modules.module.Module) –

• torch.device] input_device (Union[str,) –

• torch.device] output_device (Union[str,) –

class machin.model.nets.ResNet(in_planes, depth, out_planes, out_pool_size=1, 1, norm='none')
Bases: machin.model.nets.base.NeuralNetworkModule

Create a resnet of specified depth.

Parameters

• in_planes (int) – Number of input planes.

• depth (int) – Depth of resnet. Could be one of 18, 34, 50, 101, 152.

• out_planes (int) – Number of output planes.

• out_pool_size – Size of pooling output

• norm – Normalization method, could be one of “none”, “batch” or “weight”.

training = None

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should call the
Module instance afterwards instead of this since the former takes care of running the registered hooks
while the latter silently ignores them.

4.1.4 machin.utils

checker

exception machin.utils.checker.CheckError
Bases: Exception

machin.utils.checker.check_model(writer, model, input_check_hooks=(<function
i_chk_nan>, <function i_chk_range>), out-
put_check_hooks=(<function o_chk_nan>, <func-
tion o_chk_range>), param_check_hooks=(<function
p_chk_nan>, <function p_chk_range>), in-
put_check_interval=1, output_check_interval=1,
param_check_interval=100, name='')
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Check model input, output and parameters using hooks. All hooks (Input, output and parameter) check hooks
are executed in the forward pass.

An example:

model = nn.Linear([100, 100])
check_model(model)

# Continue to do whatever you like.
model(t.zeros([100]))

Note: Only leaf modules will be checked (such as nn.Linear and not some complex neural network modules
made of several sub-modules). But you can manually control granularity.

Warning: Do not output tuple in your forward() function if you have output check hooks, otherwise
you must specify names for each output.

Hint: You may manually control the check granularity by using mark_as_atom_module().

You may specify a list of names for your module outputs so names given to your output check hooks will not be
numbers, by using mark_module_output()

Hint: For all three kinds of hooks, your hook need to have the following signature:

hook(counter, writer, model, module, name, value)

where:

• counter is the Counter, you can use Counter.get() to get the current pass number.

• writer is SummaryWriter from tensorboardx.

• model is your model.

• module is the module currently being checked.

• name is input/output/parameter name string. For input, their detail names will be extracted from module
forward signature. Output detail names will be numbers or names you have specified.

• value is input/output/parameter value.

Parameters

• writer (tensorboardX.writer.SummaryWriter) – Tensorboard
SummaryWriter used to log.

• model (torch.nn.modules.module.Module) – Model to be checked.

• input_check_hooks – A series of input check hooks.

• output_check_hooks – A series of output check hooks.

• param_check_hooks – A series of parameter check hooks.

• input_check_interval – Interval (number of forward passes) of input checking.
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• output_check_interval – Interval (number of forward passes) of output checking.

• param_check_interval – Interval (number of backward passes) of parameter check-
ing.

• name – Your model name.

Returns A function f(), calling f() will deregister all check hooks.

machin.utils.checker.check_nan(tensor, name='')
Check whether tensor has nan element.

Parameters

• tensor (torch.Tensor) – Tensor to check

• name – Name of tensor, will be printed in the error message.

Raises RuntimeError if tensor has any nan element. –

machin.utils.checker.check_shape(tensor, required_shape, name='')
Check whether tensor has the specified shape.

Parameters

• tensor (torch.Tensor) – Tensor to check.

• required_shape (List[int]) – A list of int specifying shape of each dimension.

• name – Name of tensor, will be printed in the error message.

Raises RuntimeError if shape of the tensor doesn't match. –

machin.utils.checker.i_chk_nan(_counter, _writer, _model, _module, input_name, input_val)
Check whether there is any nan element in the input, if input is a tensor.

machin.utils.checker.i_chk_range(counter, writer, _model, _module, input_name, input_val)
Compute min, max and mean value of the input, if input is a tensor.

machin.utils.checker.mark_as_atom_module(module)
Mark module as a atom leaf module, so it can be checked.

machin.utils.checker.mark_module_output(module, output_names)
Mark names of the module output. It will also tell checker about the number of outputs.

Parameters

• module – Module to be marked.

• output_names (List[str]) – Name of each output value.

machin.utils.checker.o_chk_nan(_counter, _writer, _model, _module, output_name, output_val)
Check whether there is any nan element in the output, if input is a tensor.

machin.utils.checker.o_chk_range(counter, writer, _model, _module, output_name, output_val)
Compute min, max and mean value of the output, if output is a tensor.

machin.utils.checker.p_chk_nan(counter, _writer, _model, _module, param_name, param_val)
Check whether there is any nan element in the parameter.

machin.utils.checker.p_chk_range(counter, writer, _model, _module, param_name, param_val)
Compute min, max and mean value of the parameter.
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conf

class machin.utils.conf.Config(**configs)
Bases: machin.utils.helper_classes.Object

machin.utils.conf.load_config_cmd(merge_conf=None)
Get configs from the commandline by using “–conf”.

--conf a=b will set <Returned Config>.a = b

Example:

python3 test.py --conf device="cuda:1"
--conf some_dict={"some_key":1}

Example:

from machin.utils.conf import Config
from machin.utils.save_env import SaveEnv

# set some config attributes
c = Config(

model_save_int = 100,
root_dir = "some_directory",
restart_from_trial = "2020_05_09_15_00_31"

)

load_config_cmd(c)

# restart_from_trial specifies the trial name in your root
# directory.
# If it is set, then SaveEnv constructor will
# load arguments from that trial record, will overwrite.
# If not, then SaveEnv constructor will save configurations
# as: ``<c.some_root_dir>/<trial_start_time>/config/config.json``

save_env = SaveEnv(c)

Parameters merge_conf (machin.utils.conf.Config) – Config to merge.

Return type machin.utils.conf.Config

machin.utils.conf.load_config_file(json_file, merge_conf=None)
Get configs from a json file.

Parameters

• json_file (str) – Path to the json config file.

• merge_conf (machin.utils.conf.Config) – Config to merge.

Returns configuration

Return type machin.utils.conf.Config

machin.utils.conf.merge_config(conf, merge)
Merge config object with a dictionary, or a Config object, same keys in the conf will be overwritten by keys in
merge.

Parameters

• conf (machin.utils.conf.Config) –
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• machin.utils.conf.Config] merge (Union[dict,) –

Return type machin.utils.conf.Config

machin.utils.conf.save_config(conf, json_file)
Dump config object to a json file.

Parameters

• conf (machin.utils.conf.Config) –

• json_file (str) –

helper_classes

class machin.utils.helper_classes.Counter(start=0, step=1)
Bases: object

count()
Move counter forward by step

get()
Get the internal number of counter.

reset()
Reset the counter.

class machin.utils.helper_classes.Object(data=None, const_attrs=None)
Bases: object

An generic object class, which stores a dictionary internally, and you can access and set its keys by accessing
and seting attributes of the object.

data
Internal dictionary.

attr(item, value=None, change=False)

call(*args, **kwargs)
the implementation of Object.__call__, override it to customize call behavior.

class machin.utils.helper_classes.Switch(state=False)
Bases: object

Parameters state (bool) – Internal state, True for on, False for off.

flip()
Inverse the internal state.

get()

Returns state of switch.

Return type bool

off()
Set to off.

on()
Set to on.

class machin.utils.helper_classes.Timer
Bases: object
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begin()
Begin timing.

end()

Returns Curent time difference since last begin()

class machin.utils.helper_classes.Trigger(state=False)
Bases: machin.utils.helper_classes.Switch

Parameters state (bool) – Internal state, True for on, False for off.

get()
Get the state of trigger, will also set trigger to off.

Returns state of trigger.

learning_rate

This module is the place for all learning rate functions, currently, only manual learning rate changing according to
global steps is implemented,.

machin.utils.learning_rate.gen_learning_rate_func(lr_map, logger=None)
Example:

from torch.optim.lr_scheduler import LambdaLR

# 0 <= step < 200000, lr=1e-3, 200000 <= step, lr=3e-4
lr_func = gen_learning_rate_func([(0, 1e-3), (200000, 3e-4)],)
lr_sch = LambdaLR(optimizer, lr_func)

Parameters

• lr_map (List[Tuple[int, float]]) – A 2d learning rate map, the first element of
each row is step. the second is learning rate.

• logger (logging.Logger) – A logger to log current learning rate

Returns A learning rate generation function with signature lr_gen(step)->lr, accepts int and returns
float. use it in your pytorch lr scheduler.

logging

machin.utils.logging.default_logger
The default global logger.

TODO: maybe add logging utilities for distributed scenario?

class machin.utils.logging.FakeLogger
Bases: object

critical(msg, *args, **kwargs)

debug(msg, *args, **kwargs)

error(msg, *args, **kwargs)

exception(msg, *args, exc_info=True, **kwargs)

info(msg, *args, **kwargs)

log(level, msg, *args, **kwargs)
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setLevel(level)

warn(msg, *args, **kwargs)

warning(msg, *args, **kwargs)

media

machin.utils.media.create_image(image, path, filename, extension='.png')

Parameters

• image (numpy.array) – A numpy array of shape (H, W, C) or (H, W), and with dtype
= any float or any int. When a frame is float type, its value range should be [0, 1]. When a
frame is integer type, its value range should be [0, 255].

• path (str) – Directory to save the image.

• filename (str) – File name.

• extension (str) – File extension.

machin.utils.media.create_image_subproc(image, path, filename, extension='.png', dae-
mon=True)

Create image with a subprocess.

See also:

create_image()

Note: if daemon is true, then this function cannot be used in a daemonic subprocess.

Parameters

• image (numpy.array) – A numpy array of shape (H, W, C) or (H, W), and with dtype
= any float or any int. When a frame is float type, its value range should be [0, 1]. When a
frame is integer type, its value range should be [0, 255].

• path (str) – Directory to save the image.

• filename (str) – File name.

• extension (str) – File extension.

• daemon (bool) – Whether launching the saving process as a daemonic process.

Returns A wait function, once called, block until creation has finished.

machin.utils.media.create_video(frames, path, filename, extension='.gif', fps=15)

Parameters

• frames (List[numpy.array]) – A list of numpy arrays of shape (H, W, C) or (H, W),
and with dtype = any float or any int. When a frame is float type, its value range should
be [0, 1]. When a frame is integer type, its value range should be [0, 255].

• path (str) – Directory to save the video.

• filename (str) – File name.

• extension (str) – File extension.

• fps (int) – frames per second.
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machin.utils.media.create_video_subproc(frames, path, filename, extension='.gif', fps=15,
daemon=True)

Create video with a subprocess, since it takes a lot of time for moviepy to encode the video file.

See also:

create_video()

Note: if daemon is true, then this function cannot be used in a daemonic subprocess.

Parameters

• frames (List[numpy.array]) – A list of numpy arrays of shape (H, W, C) or (H, W),
and with dtype = any float or any int. When a frame is float type, its value range should
be [0, 1]. When a frame is integer type, its value range should be [0, 255].

• path (str) – Directory to save the video.

• filename (str) – File name.

• extension (str) – File extension.

• fps (int) – frames per second.

• daemon (bool) – Whether launching the saving process as a daemonic process.

Returns A wait function, once called, block until creation has finished.

machin.utils.media.show_image(image, show_normalized=True, pause_time=0.01, title='')
Use matplotlib to show a single image. You may repeatedly call this method with the same title argument to
show a video or a dynamically changing image.

Parameters

• image (numpy.array) – A numpy array of shape (H, W, C) or (H, W), and with dtype
= any float or any int. When a frame is float type, its value range should be [0, 1]. When a
frame is integer type, its value range should be [0, 255].

• show_normalized (bool) – Show normalized image alongside the original one.

• pause_time (float) – Pause time between displaying current image and the next one.

• title (str) – Title of the display window.

prepare

machin.utils.prepare.prep_clear_dirs(dirs)

Parameters dirs (Iterable[str]) – a list of directories to clear

machin.utils.prepare.prep_create_dirs(dirs)
Note: will recursively create directories.

Parameters dirs (Iterable[str]) – a list of directories to create if these directories are not
found.

machin.utils.prepare.prep_load_model(model_dir, model_map, version=None, quiet=False,
logger=None)

Automatically find and load models.

Parameters
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• model_dir (str) – Directory to save models.

• model_map (Dict[str, torch.nn.modules.module.Module]) – Model sav-
ing map.

• version (int) – Version to load, if specified, otherwise automatically find the latest ver-
sion.

• quiet (bool) – Raise no error if no valid version could be found.

• logger (Any) – Logger to use.

machin.utils.prepare.prep_load_state_dict(model, state_dict)
Automatically load a loaded state dictionary

Note: This function handles tensor device remapping.

Parameters

• model (torch.nn.modules.module.Module) –

• state_dict (Any) –

save_env

class machin.utils.save_env.SaveEnv(env_root, restart_from_trial=None,
time_format='%Y_%m_%d_%H_%M_%S')

Bases: object

Create the default environment for saving. creates something like:

<your environment root>
config
log

images
train_log

model

Parameters

• env_root (str) – root directory for all trials of the environment.

• restart_from_trial (Optional[str]) – instead of creating a new save environ-
ment for a new trial, use a existing save environment of an older trial, old trial name should
be in format time_format

clear_trial_config_dir()

clear_trial_image_dir()

clear_trial_model_dir()

clear_trial_train_log_dir()

create_dirs(dirs)
Create additional directories in root.

Parameters dirs (Iterable[str]) – Directories.

get_trial_config_dir()
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get_trial_image_dir()

get_trial_model_dir()

get_trial_root()

get_trial_time()

get_trial_train_log_dir()

remove_trials_older_than(diff_day=0, diff_hour=1, diff_minute=0, diff_second=0)
By default this function removes all trials started one hour earlier than current time.

Parameters

• diff_day (int) – Difference in days.

• diff_hour (int) – Difference in hours.

• diff_minute (int) – Difference in minutes.

• diff_second (int) – Difference in seconds.

tensor_board

machin.utils.tensor_board.default_board
The default global board.

class machin.utils.tensor_board.TensorBoard
Bases: object

Create a tensor board object.

writer
SummaryWriter of package tensorboardX.

init(*writer_args)

is_inited()
Returns: whether the board has been initialized with a writer.

Return type bool

visualize

machin.utils.visualize.visualize_graph(final_tensor, visualize_dir='', exit_after_vis=True)
Visualize a pytorch flow graph

Parameters

• final_tensor – The last output tensor of the flow graph

• visualize_dir – Directory to place the visualized files

• exit_after_vis – Whether to exit the whole program after visualization.
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4.1.5 machin.parallel

distributed

class machin.parallel.distributed.CollectiveGroup(group, current_relative_rank)
Bases: object

A thin wrapper of collective communication primitives of torch.distributed, the only difference is that
irecv now supports to recv from any src

Do not do it your self, use create_collective_group() instead.

all_gather(tensor_list, tensor, async_op=False)
Complex tensors are supported.

Parameters

• tensor_list (list[Tensor]) – Output list. It should contain correctly-sized ten-
sors to be used for output of the collective.

• tensor (Tensor) – Tensor to be broadcast from current process.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

Examples

>>> # All tensors below are of torch.int64 dtype.
>>> tensor_list = [torch.zero(2, dtype=torch.int64) for _ in range(2)]
>>> tensor_list
[tensor([0, 0]), tensor([0, 0])] # Rank 0 and 1
>>> tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> tensor
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.all_gather(tensor_list, tensor)
>>> tensor_list
[tensor([1, 2]), tensor([3, 4])] # Rank 0
[tensor([1, 2]), tensor([3, 4])] # Rank 1

>>> # All tensors below are of torch.cfloat dtype.
>>> tensor_list = [torch.zero(2, dtype=torch.cfloat) for _ in range(2)]
>>> tensor_list
[tensor([0.+0.j, 0.+0.j]), tensor([0.+0.j, 0.+0.j])] # Rank 0 and 1
>>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat) + 2 * rank *
→˓(1+1j)
>>> tensor
tensor([1.+1.j, 2.+2.j]) # Rank 0
tensor([3.+3.j, 4.+4.j]) # Rank 1
>>> dist.all_gather(tensor_list, tensor)
>>> tensor_list
[tensor([1.+1.j, 2.+2.j]), tensor([3.+3.j, 4.+4.j])] # Rank 0
[tensor([1.+1.j, 2.+2.j]), tensor([3.+3.j, 4.+4.j])] # Rank 1

all_gather_multigpu(output_tensor_lists, input_tensor_list, async_op=False)
Each tensor in tensor_list should reside on a separate GPU

Only nccl backend is currently supported tensors should only be GPU tensors
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Complex tensors are supported.

Parameters

• output_tensor_lists (List[List[Tensor]]) – Output lists. It should con-
tain correctly-sized tensors on each GPU to be used for output of the collective, e.g.
output_tensor_lists[i] contains the all_gather result that resides on the GPU
of input_tensor_list[i].

Note that each element of output_tensor_lists has the size of world_size
* len(input_tensor_list), since the function all each element of
output_tensor_lists[i], note that input_tensor_list[j] of rank k
will be appear in output_tensor_lists[i][k * world_size + j]

Also note that len(output_tensor_lists), and the size of each el-
ement in output_tensor_lists (each element is a list, therefore
len(output_tensor_lists[i])) need to be the same for all the distributed
processes calling this function.

• input_tensor_list (List[Tensor]) – List of tensors(on different GPUs) to be
broadcast from current process. Note that len(input_tensor_list) needs to be
the same for all the distributed processes calling this function.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

all_reduce(tensor, op=<ReduceOp.SUM: 0>, async_op=False)
Reduces the tensor data across all machines in such a way that all get the final result.

After the call tensor is going to be bitwise identical in all processes.

Complex tensors are supported.

Parameters

• tensor (Tensor) – Input and output of the collective. The function operates in-place.

• op (optional) – One of the values from torch.distributed.ReduceOp enum.
Specifies an operation used for element-wise reductions.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

Examples

>>> # All tensors below are of torch.int64 type.
>>> tensor = torch.arange(2, dtype=torch.int64) + 1 + 2 * rank
>>> tensor
tensor([1, 2]) # Rank 0
tensor([3, 4]) # Rank 1
>>> dist.all_reduce(tensor, op=ReduceOp.SUM)
>>> tensor
tensor([4, 6]) # Rank 0
tensor([4, 6]) # Rank 1

>>> # All tensors below are of torch.cfloat type.
>>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat) + 2 * rank *
→˓(1+1j)

(continues on next page)
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(continued from previous page)

>>> tensor
tensor([1.+1.j, 2.+2.j]) # Rank 0
tensor([3.+3.j, 4.+4.j]) # Rank 1
>>> dist.all_reduce(tensor, op=ReduceOp.SUM)
>>> tensor
tensor([4.+4.j, 6.+6.j]) # Rank 0
tensor([4.+4.j, 6.+6.j]) # Rank 1

all_reduce_multigpu(tensor_list, op=<ReduceOp.SUM: 0>, async_op=False)
Reduces the tensor data across all machines in such a way that all get the final result. This function reduces
a number of tensors on every node, while each tensor resides on different GPUs. Therefore, the input tensor
in the tensor list needs to be GPU tensors. Also, each tensor in the tensor list needs to reside on a different
GPU.

After the call, all tensor in tensor_list is going to be bitwise identical in all processes.

Complex tensors are supported.

Only nccl and gloo backend is currently supported tensors should only be GPU tensors

Parameters

• list (tensor) – List of input and output tensors of the collective. The function operates
in-place and requires that each tensor to be a GPU tensor on different GPUs. You also need
to make sure that len(tensor_list) is the same for all the distributed processes
calling this function.

• op (optional) – One of the values from torch.distributed.ReduceOp enum.
Specifies an operation used for element-wise reductions.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

barrier(async_op=False)
Synchronizes all processes.

if async_op is False, or if async work handle is called on wait().

Parameters

• async_op (bool, optional) – Whether this op should be an async op

• device_ids ([int], optional) – List of device/GPU ids. Valid only for NCCL
backend.

Returns Async work handle, if async_op is set to True.

broadcast(tensor, src, async_op=False)
tensor must have the same number of elements in all processes participating in the collective.

Parameters

• tensor (Tensor) – Data to be sent if src is the rank of current process, and tensor to
be used to save received data otherwise.

• src (int) – Source rank.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.
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broadcast_multigpu(tensor_list, src, async_op=False, src_tensor=0)
per node.

tensor must have the same number of elements in all the GPUs from all processes participating in the
collective. each tensor in the list must be on a different GPU

Only nccl and gloo backend are currently supported tensors should only be GPU tensors

Parameters

• tensor_list (List[Tensor]) – Tensors that participate in the collective opera-
tion. If src is the rank, then the specified src_tensor element of tensor_list
(tensor_list[src_tensor]) will be broadcast to all other tensors (on different
GPUs) in the src process and all tensors in tensor_list of other non-src processes.
You also need to make sure that len(tensor_list) is the same for all the distributed
processes calling this function.

• src (int) – Source rank.

• async_op (bool, optional) – Whether this op should be an async op

• src_tensor (int, optional) – Source tensor rank within tensor_list

Returns Async work handle, if async_op is set to True.

destroy()
Destroy this collective communication group.

gather(tensor, gather_list, dst=0, async_op=False)
Gathers a list of tensors in a single process.

Parameters

• tensor (Tensor) – Input tensor.

• gather_list (list[Tensor], optional) – List of appropriately-sized tensors
to use for gathered data (default is None, must be specified on the destination rank)

• dst (int, optional) – Destination rank (default is 0)

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

irecv(tensor, src=None, tag=0)

Returns An object you can call .wait() on, .wait() will return the source rank.

isend(tensor, dst, tag=0)
Sends a tensor asynchronously.

Parameters

• tensor (Tensor) – Tensor to send.

• dst (int) – Destination rank.

• tag (int, optional) – Tag to match send with remote recv

Returns A distributed request object.

recv(tensor, src=None, tag=0)
Receives a tensor synchronously.

Parameters

• tensor (Tensor) – Tensor to fill with received data.
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• src (int, optional) – Source rank. Will receive from any process if unspecified.

• tag (int, optional) – Tag to match recv with remote send

Returns Sender rank

reduce(tensor, dst, op=<ReduceOp.SUM: 0>, async_op=False)
Reduces the tensor data across all machines.

Only the process with rank dst is going to receive the final result.

Parameters

• tensor (Tensor) – Input and output of the collective. The function operates in-place.

• dst (int) – Destination rank

• op (optional) – One of the values from torch.distributed.ReduceOp enum.
Specifies an operation used for element-wise reductions.

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

reduce_multigpu(tensor_list, dst, op=<ReduceOp.SUM: 0>, async_op=False, dst_tensor=0)
Reduces the tensor data on multiple GPUs across all machines. Each tensor in tensor_list should
reside on a separate GPU

Only the GPU of tensor_list[dst_tensor] on the process with rank dst is going to receive the
final result.

Only nccl backend is currently supported tensors should only be GPU tensors

Parameters

• tensor_list (List[Tensor]) – Input and output GPU tensors of the collective.
The function operates in-place. You also need to make sure that len(tensor_list)
is the same for all the distributed processes calling this function.

• dst (int) – Destination rank

• op (optional) – One of the values from torch.distributed.ReduceOp enum.
Specifies an operation used for element-wise reductions.

• async_op (bool, optional) – Whether this op should be an async op

• dst_tensor (int, optional) – Destination tensor rank within tensor_list

Returns Async work handle, if async_op is set to True. None, otherwise

scatter(tensor, scatter_list=None, src=0, async_op=False)
Each process will receive exactly one tensor and store its data in the tensor argument.

Parameters

• tensor (Tensor) – Output tensor.

• scatter_list (list[Tensor]) – List of tensors to scatter (default is None, must
be specified on the source rank)

• src (int) – Source rank (default is 0)

• async_op (bool, optional) – Whether this op should be an async op

Returns Async work handle, if async_op is set to True.

send(tensor, dst, tag=0)
Sends a tensor synchronously.
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Parameters

• tensor (Tensor) – Tensor to send.

• dst (int) – Destination rank.

• tag (int, optional) – Tag to match send with remote recv

size()

Returns collective group size.

class machin.parallel.distributed.RpcGroup(group_name, group_members,
first_create=True)

Bases: object

barrier(*args, **kwargs)

deregister(*args, **kwargs)

destroy(*args, **kwargs)

static get_cur_name()

Return type str

get_group_members()

Returns A list of group members.

Return type List[str]

get_group_name()

Returns Name of this group.

Return type str

get_paired(key)

Parameters key (Any) – Key of the paired value, in this group.

Returns A RRef to the paired value.

Raises KeyError if not found. –

is_member(target=None)
Check whether target name is a group member.

Parameters target (str) –

Return type bool

is_paired(key)
Check whether a key has been paired to the current group.

Parameters key (Any) – A key which uniquely identifies this value in this group. The name
only needs to be unique for this value in this group.

is_registered(key)
Check whether a service has been registered in the current group.

Parameters key (Any) – A key which uniquely identifies this service in this group. The name
only needs to be unique for this service in this group.

pair(*args, **kwargs)

register(*args, **kwargs)

registered_async(key, args=(), kwargs=None)
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Parameters

• key (Any) – Key of the registered service, in this group.

• args – Service arguments.

• kwargs – Service keyword arguments.

Returns A future object you can call wait()``on. ``wait() will block the thread until
execution is completed, and will return the result returned by the service.

Raises KeyError if service is not found. –

registered_remote(key, args=(), kwargs=None)

Parameters

• key (Any) – Key of the registered service, in this group.

• args – Service arguments.

• kwargs – Service keyword arguments.

Returns A RRef object pointing to the result returned by the service.

Raises KeyError if service is not found. –

registered_sync(key, args=(), kwargs=None)

Parameters

• key (Any) – Key of the registered service, in this group.

• args – Service arguments.

• kwargs – Service keyword arguments.

Returns Result returned by the service.

Raises KeyError if service is not found. –

remote(to, func, timeout=- 1, args=(), kwargs=None)
Make a remote call to run func on worker to and return an RRef to the result value immediately. Worker
to will be the owner of the returned RRef, and the worker calling remote is a user. The owner manages
the global reference count of its RRef, and the owner RRef is only destructed when globally there are no
living references to it.

Parameters

• to (str or WorkerInfo or int) – name/rank/WorkerInfo of the destination
worker.

• func (callable) – a callable function, such as Python callables, builtin operators (e.g.
add()) and annotated TorchScript functions.

• args (tuple) – the argument tuple for the func invocation.

• kwargs (dict) – is a dictionary of keyword arguments for the func invocation.

• timeout (float, optional) – timeout in seconds for this remote call. If the cre-
ation of this RRef on worker to is not successfully processed on this worker within this
timeout, then the next time there is an attempt to use the RRef (such as to_here()),
a timeout will be raised indicating this failure. A value of 0 indicates an infinite time-
out, i.e. a timeout error will never be raised. If not provided, the default value set during
initialization or with _set_rpc_timeout is used.
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Returns A user RRef instance to the result value. Use the blocking API torch.
distributed.rpc.RRef.to_here() to retrieve the result value locally.

Warning: Using GPU tensors as arguments or return values of func is not supported since we don’t
support sending GPU tensors over the wire. You need to explicitly copy GPU tensors to CPU before
using them as arguments or return values of func.

Warning: The remote API does not copy storages of argument tensors until sending them over
the wire, which could be done by a different thread depending on the RPC backend type. The
caller should make sure that the contents of those tensors stay intact until the returned RRef is
confirmed by the owner, which can be checked using the torch.distributed.rpc.RRef.
confirmed_by_owner() API.

Warning: Errors such as timeouts for the remote API are handled on a best-effort basis. This means
that when remote calls initiated by remote fail, such as with a timeout error, we take a best-effort
approach to error handling. This means that errors are handled and set on the resulting RRef on an
asynchronous basis. If the RRef has not been used by the application before this handling (such as
to_here or fork call), then future uses of the RRef will appropriately raise errors. However, it is
possible that the user application will use the RRef before the errors are handled. In this case, errors
may not be raised as they have not yet been handled.

Example:: Make sure that MASTER_ADDR and MASTER_PORT are set properly API for more details.
For example,

>>> export MASTER_ADDR=localhost
>>> export MASTER_PORT=5678

Then run the following code in two different processes:

>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> rref1 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 3))
>>> rref2 = rpc.remote("worker1", torch.add, args=(torch.ones(2), 1))
>>> x = rref1.to_here() + rref2.to_here()
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

Below is an example of running a TorchScript function using RPC.

>>> # On both workers:
>>> @torch.jit.script
>>> def my_script_add(t1, t2):
>>> return torch.add(t1, t2)
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>>> # On worker 0:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> rref = rpc.remote("worker1", my_script_add, args=(torch.ones(2), 3))
>>> rref.to_here()
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

rpc_async(to, func, timeout=- 1, args=(), kwargs=None)
Make a non-blocking RPC call to run function func on worker to. RPC messages are sent and received
in parallel to execution of Python code. This method is thread-safe. This method will immediately return
a Future that can be awaited on.

Parameters

• to (str or WorkerInfo or int) – name/rank/WorkerInfo of the destination
worker.

• func (callable) – a callable function, such as Python callables, builtin operators (e.g.
add()) and annotated TorchScript functions.

• args (tuple) – the argument tuple for the func invocation.

• kwargs (dict) – is a dictionary of keyword arguments for the func invocation.

• timeout (float, optional) – timeout in seconds to use for this RPC. If the RPC
does not complete in this amount of time, an exception indicating it has timed out will be
raised. A value of 0 indicates an infinite timeout, i.e. a timeout error will never be raised.
If not provided, the default value set during initialization or with _set_rpc_timeout
is used.

Returns Returns a Future object that can be waited on. When completed, the return value of
func on args and kwargs can be retrieved from the Future object.

Warning: Using GPU tensors as arguments or return values of func is not supported since we don’t
support sending GPU tensors over the wire. You need to explicitly copy GPU tensors to CPU before
using them as arguments or return values of func.

Warning: The rpc_async API does not copy storages of argument tensors until sending them over
the wire, which could be done by a different thread depending on the RPC backend type. The caller
should make sure that the contents of those tensors stay intact until the returned Future completes.

Example:: Make sure that MASTER_ADDR and MASTER_PORT are set properly API for more details.
For example,

>>> export MASTER_ADDR=localhost
>>> export MASTER_PORT=5678

Then run the following code in two different processes:
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>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> fut1 = rpc.rpc_async("worker1", torch.add, args=(torch.ones(2), 3))
>>> fut2 = rpc.rpc_async("worker1", min, args=(1, 2))
>>> result = fut1.wait() + fut2.wait()
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

Below is an example of running a TorchScript function using RPC.

>>> # On both workers:
>>> @torch.jit.script
>>> def my_script_add(t1, t2):
>>> return torch.add(t1, t2)

>>> # On worker 0:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> fut = rpc.rpc_async("worker1", my_script_add, args=(torch.ones(2), 3))
>>> ret = fut.wait()
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

rpc_sync(to, func, timeout=- 1, args=(), kwargs=None)
Make a blocking RPC call to run function func on worker to. RPC messages are sent and received in
parallel to execution of Python code. This method is thread-safe.

Parameters

• to (str or WorkerInfo or int) – name/rank/WorkerInfo of the destination
worker.

• func (callable) – a callable function, such as Python callables, builtin operators (e.g.
add()) and annotated TorchScript functions.

• args (tuple) – the argument tuple for the func invocation.

• kwargs (dict) – is a dictionary of keyword arguments for the func invocation.

• timeout (float, optional) – timeout in seconds to use for this RPC. If the RPC
does not complete in this amount of time, an exception indicating it has timed out will be
raised. A value of 0 indicates an infinite timeout, i.e. a timeout error will never be raised.
If not provided, the default value set during initialization or with _set_rpc_timeout
is used.

Returns Returns the result of running func with args and kwargs.
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Warning: Using GPU tensors as arguments or return values of func is not supported since we don’t
support sending GPU tensors over the wire. You need to explicitly copy GPU tensors to CPU before
using them as arguments or return values of func.

Example:: Make sure that MASTER_ADDR and MASTER_PORT are set properly API for more details.
For example,

>>> export MASTER_ADDR=localhost
>>> export MASTER_PORT=5678

Then run the following code in two different processes:

>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> ret = rpc.rpc_sync("worker1", torch.add, args=(torch.ones(2), 3))
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

Below is an example of running a TorchScript function using RPC.

>>> # On both workers:
>>> @torch.jit.script
>>> def my_script_add(t1, t2):
>>> return torch.add(t1, t2)

>>> # On worker 0:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> ret = rpc.rpc_sync("worker1", my_script_add, args=(torch.ones(2), 3))
>>> rpc.shutdown()

>>> # On worker 1:
>>> import torch.distributed.rpc as rpc
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()

size()
Get the number of members in group.

unpair(*args, **kwargs)

machin.parallel.distributed.World(*args, **kwargs)

machin.parallel.distributed.get_world()

machin.parallel.distributed.get_cur_rank()

Returns Current real process rank.

machin.parallel.distributed.get_cur_name()
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Returns Current real process name.

server

class machin.parallel.server.OrderedServerBase
Bases: abc.ABC

Descendent classes of OrderedServer does not have to guarantee strong consistency, that is, even if
OrderedServerBase.push_service`() has returned True, there are possibilities that these acknowl-
edged push are discarded.

abstract pull(key, version=None)
Pull a value with the specified version in key.

Parameters

• key – Key.

• version – Target version, if None, then the newest version of value of key will be
pulled.

Returns None if version is not found, auto-deleted, or key is not found, otherwise returns value
with the specified version in key, and then version

abstract push(key, value, version, prev_version)
Push a new version of value in key to the ordered server.

Note: If version = prev_version then there is no order guarantee. But you may exploit this
feature.

Parameters

• key – Key.

• value – value.

• version – New version.

• prev_version – Previous version.

Returns True if success, and False if not.

class machin.parallel.server.OrderedServerSimple(server_name, group)
Bases: machin.parallel.server.ordered_server.OrderedServerBase

Parameters

• server_name (str) –

• group (machin.parallel.distributed.world.RpcGroup) –

pull(key, version=None)
Pull a value with the specified version in key.

Parameters

• key – Key.

• version – Target version, if None, then the newest version of value of key will be
pulled.
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Returns None if version is not found, auto-deleted, or key is not found, otherwise returns value
with the specified version in key, and then version

push(key, value, version, prev_version)
Push a new version of value in key to the ordered server.

Note: If version = prev_version then there is no order guarantee. But you may exploit this
feature.

Parameters

• key – Key.

• value – value.

• version – New version.

• prev_version – Previous version.

Returns True if success, and False if not.

class machin.parallel.server.OrderedServerSimpleImpl(server_name, group, ver-
sion_depth=1, **__)

Bases: object

A simple key-value server, with strict ordered update

This init function must be only invoked on the runner process, and the runner process must be a member process
of group.

Parameters

• server_name (str) – Name of this server, used to registered the server as a paired class
of group.

• group (machin.parallel.distributed.world.RpcGroup) – Rpc group
where server locates.

• server_runner – Name of the process serving the ordered server. By default is the first
member of the group.

• version_depth (int) – Storage depth of old versions of the same key. If depth = 1,
then only the newest version of the key will be saved.

class machin.parallel.server.PushPullGradServer(server_name, group, model_name, sec-
ondary_reducers, o_server)

Bases: object

Parameters

• server_name (str) –

• group (machin.parallel.distributed.world.RpcGroup) –

• model_name (str) –

• secondary_reducers (List[str]) –

• o_server (machin.parallel.server.ordered_server.
OrderedServerBase) –

pull(model)
Pull the newest model. Its gradients will be cleared.
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Parameters model (torch.nn.modules.module.Module) – Model to push.

push(model)

Push the gradients of your model, then pull the newest parameters. Its gradients will be cleared.

Parameters model (torch.nn.modules.module.Module) – Model to push.

class machin.parallel.server.PushPullGradServerImpl(server_name, group,
model_name='model', pri-
mary_reducer=None, sec-
ondary_reducers=None,
o_server=None, re-
duce_method='sum', re-
duce_device='cpu', re-
duce_batch_size=4,
max_queue_size=64)

Bases: object

A simple parameter server, which synchronize model parameters by pushing gradients and pulling back new
parameters, no strict order is guaranteed.

Warning: DistributedDataParallel is not supported. since we cannot load state dictionary after
creation.

Note: You should initialize PushPullGradServer on all members of secondary_reducers, and
primary_reducer. Both of them should be members of the group.

Note: Internally the primary reducer will push updated versions to the ordered server.

Hint: Reduction is performed in a tree fashion:

1. In the first step, clients will push new gradients to a random secondary reducer, and the secondary reducer
will perform the first reduction pass, then secondary reducers will push their results to the primary reducer.

2. In the second step, the primary reducer will reduce results from the secondary reducer to get the final
reduced gradient dictionary (has the same structure as state_dict), and assign gradients to its managed
model, and perform the optimization.

3. In the final step, the primary reducer will push the final model to the model server group, then clients can
pull the newest model.

Parameters

• server_name (str) – Name of this server, used to registered the server as a paired class
of group.

• group (machin.parallel.distributed.world.RpcGroup) – Server group.

• model_name (str) – Name of the managed model in the ordered server, only needed if
server needs such a identifier. The default ordered server does not require this.
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• primary_reducer (str) – Name of the process serving as the primary reducer, which
collects reduced gradients from secondary reducers and perform the final reduction.

• secondary_reducers (List[str]) – Name of the process serving as secondary re-
ducers.

• o_server (machin.parallel.server.ordered_server.
OrderedServerBase) – Custom ordered server accessor. By default, the ordered
server is a OrderedServerSimple hosted on the primary reducer.

• reduce_method (str) – “mean” or “sum”

• reduce_device (Union[torch.device, str]) – Device to perform reduction,
by default it is “cpu”.

• reduce_batch_size (int) – Size of a single reduction batch, server will wait until the
number of requests in the reduction queue have reached this size.

• max_queue_size (int) – Maximum reduction request queue size.

manage_model(model, optimizer)
Let the main reducer manage your model. Must be called before start.

Warning: Make sure that the managed model is different from the model you use in your algorithms
such as A3C!

Parameters

• model (torch.nn.modules.module.Module) – Model to manage.

• optimizer (>>>) – Optimizer of your model. you should initialize it first:

• optimizer –

Raises RuntimeError if current rpc role is not the main reducer. –

start()

stop()

watch()

REDUCE_MASTER = 0

REDUCE_SLAVE = 1

class machin.parallel.server.PushPullModelServer(model_name, o_server=None)
Bases: object

Create an accessor to the services provided by PushPullModelServerImpl

Parameters

• model_name (str) – Name of the managed model in the ordered server, only needed if
server needs such a identifier. The default ordered server does not require this.

• o_server (machin.parallel.server.ordered_server.
OrderedServerBase) – Ordered server accessor.

pull(model)
Pull the newest state dict of your model and update its parameters and pp_version. Gradients will not
be cleared.
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Parameters model (torch.nn.modules.module.Module) – Model to pull.

push(model, pull_on_fail=True)
Try to push a model to the ordered server, if failed, the newest model will be automatically pulled and its
parameters will be assigned to model. Gradients will not be cleared.

Parameters

• model (torch.nn.modules.module.Module) – Model to push.

• pull_on_fail – Pull the newest parameters if push failed.

class machin.parallel.server.PushPullModelServerImpl(server_name, group,
model_name='model',
o_server=None)

Bases: object

A simple parameter server, which synchronize model parameters by pushing and pulling all parameters and
maintaining a strict ordered version chain.

Warning: Only one model is supported.

This init function must be only invoked on the runner process, and the runner process must be a member process
of group.

Parameters

• server_name (str) – Name of this server, used to registered the server as a paired class
of group.

• group (machin.parallel.distributed.world.RpcGroup) – RpcGroup of
the default server OrderedServerSimple mutually exclusive with o_server

• model_name (str) – Name of the managed model in the ordered server, only needed if
server needs such a identifier. The default ordered server does not require this.

• o_server (machin.parallel.server.ordered_server.
OrderedServerBase) – Custom ordered server accessor.

assigner

class machin.parallel.assigner.ModelAssigner(models, model_connection, de-
vices=None, model_size_multiplier=2,
max_mem_ratio=0.5, cpu_weight=0,
connection_weight=2,
size_match_weight=0.01, com-
plexity_match_weight=1, en-
tropy_weight=1, iterations=500, up-
date_rate=0.01, gpu_gpu_distance=1,
cpu_gpu_distance=10,
move_models=True)

Bases: object

Assigner for pytorch modules.

Assign models to different devices. In the scope of a single process. Assigner assumes all GPUs have the same
processing power.

Assignment is based on four aspects:
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1. Distance and model connections. Connection is usually indicated by the amount of data transmitted be-
tween two models.

2. Compute complexity.

3. Model size.

4. Entropy.

Four aspects are controlled by four weights:

1. connection_weight, assigner will try to reduce the total distance * connection if this
weight is larger.

2. size_match_weight, this weight controls the total memory space used on a single device, only works
if total assigned memory of models exceeds allowed device memory size (internally it uses a relu activa-
tion), the larger, the tighter and more restricted the fit.

3. complexity_match_weight, this weights balance the model computation cost across devices, as-
signer will try to even the computation cost / compute power ratio for each device if this
weight is larger.

4. entropy_weight, this weight minimize the uncertainty of model placement probability, so model i
will have a close to 1 probability of locating on some device j if this weight is larger.

Assignment uses gradient descent to compute the probability matrix of each model i locating on each avail-
able device j.

See also:

ModelSizeEstimator

Note: When the sum of your model size is very close to the capacity of your device memory, ModelAs-
signer does not respond very well to the size_match_weight, therefore, please consider about increasing
model_size_multiplier or decreasing max_mem_ratio.

Parameters

• models (List[torch.nn.modules.module.Module]) – Models to assign.

• model_connection (Dict[Tuple[int, int], int]) – Connection weight be-
tween modules. Must be positive

• devices (List[Union[torch.device, str]]) – Available devices.

• model_size_multiplier – Size multiplier of models, used to reserve enough space
for models,

• max_mem_ratio – Maximum percent of memory allowed.

• cpu_weight – Weight of cpu. Relative to the computing power of one GPU. By default
it is 0 so no computation will be performed on CPU. Must be positive

• connection_weight – Weight of connection between models.

• size_match_weight – Weight of size match.

• complexity_match_weight – Weight of complexity match.

• entropy_weight – Weight of entropy.

• iterations – Number of optimization iterations.

• update_rate – Learning rate of the adam optimizer.
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• gpu_gpu_distance – Estimated distance cost between gpu-gpu. Must be positive

• cpu_gpu_distance – Estimated distance cost between cpu-gpu. Must be positive

• move_models – Whether to automatically move the models after assignment.

static optimize_placement(optimizer, placement, model_size, size_capacity,
model_complexity, complexity_capacity, model_connection,
device_distance, connection_weight, size_match_weight, complex-
ity_match_weight, entropy_weight)

Suppose there are n models to place and m devices available.

Parameters

• optimizer – optimizer of placement

• placement (torch.Tensor) – shape [n, m]

• model_size (torch.Tensor) – shape [1, n]

• size_capacity (torch.Tensor) – shape [1, m]

• model_complexity (torch.Tensor) – shape [1, n]

• complexity_capacity (torch.Tensor) – shape [1, m]

• model_connection (torch.Tensor) – shape [n, n]

• device_distance (torch.Tensor) – shape [m, m]

• connection_weight (float) – Weight of connection between models.

• size_match_weight (float) – Weight of size match.

• complexity_match_weight (float) – Weight of complexity match.

• entropy_weight (float) – weight of entropy.

property assignment
List[t.device]: Assigned devices for each model in your model list.

class machin.parallel.assigner.ModelSizeEstimator(model, size_multiplier=2)
Bases: object

Size estimator for pytorch modules.

Estimates the size of PyTorch models in memory.

Note: This estimator can only estimate the total size of parameters and buffers. Therefore we need to multiply
the raw estimated size with a correction coefficient to reserve enough space for models.

Parameters

• model (torch.nn.modules.module.Module) – Model to be estimated.

• size_multiplier – Model estimated size will be multiplied with this value, to ensure
enough space will be reserved to contain your model and inputs.

estimate_size()
Estimate model size in memory in megabytes.

get_buffer_sizes()
Get sizes of all buffers in model in mega bytes.
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Return type float

get_parameter_sizes()
Get sizes of all parameters in model in mega bytes.

Return type float

pickle

class machin.parallel.pickle.Pickler(file, recurse=False, copy_tensor=False)
Bases: dill._dill.Pickler

Note: Picklers shares “.dispatch” among instances, and owns “dispatch_table” per instance.

The base Pickler (not dill, from builtin pickle library), will first look up the default dump method in “.dispatch”,
if no valid method is found, it will try to find a custom dump method in “.dispatch_table”.

This takes a binary file for writing a pickle data stream.

The optional protocol argument tells the pickler to use the given protocol; supported protocols are 0, 1, 2, 3 and
4. The default protocol is 3; a backward-incompatible protocol designed for Python 3.

Specifying a negative protocol version selects the highest protocol version supported. The higher the protocol
used, the more recent the version of Python needed to read the pickle produced.

The file argument must have a write() method that accepts a single bytes argument. It can thus be a file object
opened for binary writing, an io.BytesIO instance, or any other custom object that meets this interface.

If fix_imports is True and protocol is less than 3, pickle will try to map the new Python 3 names to the old
module names used in Python 2, so that the pickle data stream is readable with Python 2.

machin.parallel.pickle.dumps(obj, recurse=False, copy_tensor=True)
Convert objects to bytes. Works for cpu and gpu tensors.

Warning: Till pytorch 1.5.0, there is a bug for referenced gpu tensors, which would require users to keep
shared gpu tensors during the whole process life and not reassigning / deleting them, however, you may refill
them with different values.

See here

Parameters

• obj – Object to dump.

• recurse – Enable recursive dumping, enable this to dump local functions and lambdas.

• copy_tensor – Whether to dump tensors, storage as a full copy. If it is set to “False”,
then dumped tensors must either locate on GPUs or in shared memory.

Returns Bytes.

machin.parallel.pickle.mark_static_module(module)
Some modules are static, which means they are stateless and will remain the same whether you import it in
process A or process B.

If your module contains reference to functions, objects or anything inside a CDLL (usually the reference is a
pointer), it is not picklable by dill, and will cause nasty errors, however, by marking this module as “Static”,
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dill will recognize this module as a builtin module and not saving the states of this module, dill will only save a
reference to it in this situation.

Parameters module (Any) – Some module which imports CDLLs by hand and not using py-
bind11.

pool

class machin.parallel.pool.CtxPool(processes, initializer=None, initargs=(), maxtasksper-
child=None, worker_contexts=None, is_recursive=False,
is_daemon=True, is_copy_tensor=True,
share_method=None)

Bases: machin.parallel.pool.Pool

Pool with context for each worker. your function must accept a ctx object as your first non-keyword argument.

If worker_contexts is not specified, then ctx will be None.

The length of worker_contexts must be the same as processes

Note: To share “cpu” tensors in shared memory, you must set:

is_copy_tensor=False,
share_method="cpu"

To share “cuda” tensors, you must set:

is_copy_tensor=False,
share_method="cuda"

Note: The default context used in pool is “spawn”, to avoid any issues brought by “fork”. “fork” will only be
used if you want to pass cpu tensors in shared memory.

Parameters

• processes (int) – Number of processes in the pool.

• initializer – Initializer function executed by the pool/

• initargs – Args passed to the init function.

• maxtasksperchild – Maximum number of tasks per worker process.

• is_recursive – Set to True to support local functions and lambdas.

• is_daemon – Whether worker processes in the pool are started as daemon processes.

• is_copy_tensor – Whether to copy tensors or pass tensors by reference to worker pro-
cesses.

• share_method – If is_copy_tensor is False, you must specify this argument.
“cpu” means you may use cpu tensors in the shared memory, “cuda” means cuda tensors,
you can only specify one share method.

class machin.parallel.pool.CtxPoolStorage
Bases: object
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This storage class is used by all CtxPool instances. However, since for each worker process, they have
different memory spaces, storage is unique for all workers.

storage is accessed on the client process side.

storage = None

class machin.parallel.pool.CtxThreadPool(processes, initializer=None, initargs=(),
worker_contexts=None)

Bases: machin.parallel.pool.ThreadPool

Parameters processes (int) –

apply(func, args=(), kwds=None)
Equivalent of func(*args, **kwds). Pool must be running.

apply_async(func, args=(), kwds=None, callback=None, error_callback=None)
Asynchronous version of apply() method.

imap(func, iterable, chunksize=1)
Equivalent of map() – can be MUCH slower than Pool.map().

imap_unordered(func, iterable, chunksize=1)
Like imap() method but ordering of results is arbitrary.

map(func, iterable, chunksize=None)
Apply func to each element in iterable, collecting the results in a list that is returned.

map_async(func, iterable, chunksize=None, callback=None, error_callback=None)
Asynchronous version of map() method.

starmap(func, iterable, chunksize=None)
Like map() method but the elements of the iterable are expected to be iterables as well and will be unpacked
as arguments. Hence func and (a, b) becomes func(a, b).

starmap_async(func, iterable, chunksize=None, callback=None, error_callback=None)
Asynchronous version of starmap() method.

class machin.parallel.pool.P2PPool(processes=None, initializer=None, initargs=(),
maxtasksperchild=None, is_recursive=False,
is_daemon=True, is_copy_tensor=True,
share_method=None)

Bases: machin.parallel.pool.Pool

Note: To share “cpu” tensors in shared memory, you must set:

is_copy_tensor=False,
share_method="cpu"

To share “cuda” tensors, you must set:

is_copy_tensor=False,
share_method="cuda"

Note: The default context used in pool is “spawn”, to avoid any issues brought by “fork”. “fork” will only be
used if you want to pass cpu tensors in shared memory.

Parameters
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• processes – Number of processes in the pool.

• initializer – Initializer function executed by the pool/

• initargs – Args passed to the init function.

• maxtasksperchild – Maximum number of tasks per worker process.

• is_recursive – Set to True to support local functions and lambdas.

• is_daemon – Whether worker processes in the pool are started as daemon processes.

• is_copy_tensor – Whether to copy tensors or pass tensors by reference to worker pro-
cesses.

• share_method – If is_copy_tensor is False, you must specify this argument.
“cpu” means you may use cpu tensors in the shared memory, “cuda” means cuda tensors,
you can only specify one share method.

close()

class machin.parallel.pool.Pool(processes=None, initializer=None, initargs=(), max-
tasksperchild=None, is_recursive=False, is_daemon=True,
is_copy_tensor=True, share_method=None)

Bases: multiprocessing.pool.Pool

Enhanced multiprocessing pool for pytorch, provides:

1. Support for lambdas and local functions.

2. Ability to select the tensor serialize scheme.

Note: To share “cpu” tensors in shared memory, you must set:

is_copy_tensor=False,
share_method="cpu"

To share “cuda” tensors, you must set:

is_copy_tensor=False,
share_method="cuda"

Note: The default context used in pool is “spawn”, to avoid any issues brought by “fork”. “fork” will only be
used if you want to pass cpu tensors in shared memory.

Parameters

• processes – Number of processes in the pool.

• initializer – Initializer function executed by the pool/

• initargs – Args passed to the init function.

• maxtasksperchild – Maximum number of tasks per worker process.

• is_recursive – Set to True to support local functions and lambdas.

• is_daemon – Whether worker processes in the pool are started as daemon processes.
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• is_copy_tensor – Whether to copy tensors or pass tensors by reference to worker pro-
cesses.

• share_method – If is_copy_tensor is False, you must specify this argument.
“cpu” means you may use cpu tensors in the shared memory, “cuda” means cuda tensors,
you can only specify one share method.

apply(func, args=(), kwds=None)
Equivalent of func(*args, **kwds). Pool must be running.

apply_async(func, args=(), kwds=None, callback=None, error_callback=None)
Asynchronous version of apply() method.

imap(func, iterable, chunksize=1)
Equivalent of map() – can be MUCH slower than Pool.map().

imap_unordered(func, iterable, chunksize=1)
Like imap() method but ordering of results is arbitrary.

map(func, iterable, chunksize=None)
Apply func to each element in iterable, collecting the results in a list that is returned.

map_async(func, iterable, chunksize=None, callback=None, error_callback=None)
Asynchronous version of map() method.

size()

Returns The number of workers in pool.

starmap(func, iterable, chunksize=None)
Like map() method but the elements of the iterable are expected to be iterables as well and will be unpacked
as arguments. Hence func and (a, b) becomes func(a, b).

starmap_async(func, iterable, chunksize=None, callback=None, error_callback=None)
Asynchronous version of starmap() method.

class machin.parallel.pool.ThreadPool(processes=None, initializer=None, initargs=())
Bases: multiprocessing.pool.ThreadPool

A typical thread pool.

size()

Returns The number of workers in pool.

machin.parallel.pool.proxy_caller(*input_)
Call a serialized function and return results.

machin.parallel.pool.proxy_ctx_caller(*input_)
Call a serialized function with worker context and return results.

machin.parallel.pool.proxy_dumper(recurse, copy_tensor, func, args_list)
Serialize a function so it can be called.

Returns List[function string, arguments. . . ]
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queue

class machin.parallel.queue.SimpleQueue(*, ctx=None, copy_tensor=False)
Bases: object

A simple single direction queue for inter-process communications. There could be multiple receivers and mul-
tiple senders on each side.

Parameters

• ctx – Multiprocessing context, you can get this using get_context

• copy_tensor – Set the queue to send a fully serialized tensor if True, and only a stub
of reference if False.

See also:

dump_tensor()

close()

empty()

Returns Whether the queue is empty or not.

get(timeout=None)
Get an object from the queue. This api is required by multiprocessing.pool to perform inter-
process communication.

Note: This api is used by sub-processes in pool to get tasks and work.

Returns Any object.

put(obj)
Put an object into the queue. This api is required by multiprocessing.pool to perform inter-process
communication.

Note: This api is used by sub-processes in pool to put results and respond.

Parameters obj (Any) – Any object.

quick_get(timeout=None)
Get an object from the queue.

Note: this api is used by the result manager (Pool._result_handler) thread to get results from the
queue, since it is single threaded, there is no need to use locks, and therefore quicker.

Returns Any object.

quick_put(obj)
Put an object into the queue.

Note: this api is used by the pool manager (Pool._task_handler) thread to put tasks into the
queue, since it is single threaded, there is no need to use locks, and therefore quicker.
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Parameters obj (Any) – Any object.
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CollectiveGroup (class in
machin.parallel.distributed), 135

Config (class in machin.utils.conf ), 128
count() (machin.utils.helper_classes.Counter

method), 129
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forward() (machin.model.nets.NeuralNetworkModule
method), 124

forward() (machin.model.nets.ResNet method), 125

G
gather() (machin.parallel.distributed.CollectiveGroup

method), 138
gen_learning_rate_func() (in module

machin.utils.learning_rate), 130
get() (machin.parallel.queue.SimpleQueue method),

158
get() (machin.utils.helper_classes.Counter method),

129
get() (machin.utils.helper_classes.Switch method), 129
get() (machin.utils.helper_classes.Trigger method),

130
get_buffer_sizes()

(machin.parallel.assigner.ModelSizeEstimator
method), 152

get_cur_name() (in module
machin.parallel.distributed), 145

get_cur_name() (machin.parallel.distributed.RpcGroup
static method), 140

get_cur_rank() (in module
machin.parallel.distributed), 145

get_dev() (machin.frame.noise.param_space_noise.AdaptiveParamNoise
method), 119
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get_group_members()
(machin.parallel.distributed.RpcGroup
method), 140

get_group_name() (machin.parallel.distributed.RpcGroup
method), 140

get_leaf_all_weights()
(machin.frame.buffers.prioritized_buffer.WeightTree
method), 112

get_leaf_max() (machin.frame.buffers.prioritized_buffer.WeightTree
method), 112

get_leaf_weight()
(machin.frame.buffers.prioritized_buffer.WeightTree
method), 112

get_paired() (machin.parallel.distributed.RpcGroup
method), 140

get_parameter_sizes()
(machin.parallel.assigner.ModelSizeEstimator
method), 153

get_restorable() (machin.frame.algorithms.base.TorchFramework
class method), 67

get_trial_config_dir()
(machin.utils.save_env.SaveEnv method),
133

get_trial_image_dir()
(machin.utils.save_env.SaveEnv method),
133

get_trial_model_dir()
(machin.utils.save_env.SaveEnv method),
134

get_trial_root() (machin.utils.save_env.SaveEnv
method), 134

get_trial_time() (machin.utils.save_env.SaveEnv
method), 134

get_trial_train_log_dir()
(machin.utils.save_env.SaveEnv method),
134

get_weight_sum() (machin.frame.buffers.prioritized_buffer.WeightTree
method), 113

get_world() (in module machin.parallel.distributed),
145

GymTerminationError, 64

H
has_keys() (machin.frame.transition.TransitionBase

method), 123
HDDPG (class in machin.frame.algorithms.hddpg), 71

I
i_chk_nan() (in module machin.utils.checker), 127
i_chk_range() (in module machin.utils.checker), 127
imap() (machin.parallel.pool.CtxThreadPool method),

155
imap() (machin.parallel.pool.Pool method), 157

imap_unordered() (machin.parallel.pool.CtxThreadPool
method), 155

imap_unordered() (machin.parallel.pool.Pool
method), 157

IMPALA (class in machin.frame.algorithms.impala), 98
info() (machin.utils.logging.FakeLogger method), 130
init() (machin.utils.tensor_board.TensorBoard

method), 134
input_device() (machin.model.nets.NeuralNetworkModule

property), 124
irecv() (machin.parallel.distributed.CollectiveGroup

method), 138
is_inited() (machin.utils.tensor_board.TensorBoard

method), 134
is_member() (machin.parallel.distributed.RpcGroup

method), 140
is_paired() (machin.parallel.distributed.RpcGroup

method), 140
is_registered() (machin.parallel.distributed.RpcGroup

method), 140
isend() (machin.parallel.distributed.CollectiveGroup

method), 138
items() (machin.frame.transition.TransitionBase

method), 123

K
keys() (machin.frame.transition.TransitionBase

method), 123

L
load() (machin.frame.algorithms.base.TorchFramework

method), 67
load() (machin.frame.algorithms.ddpg.DDPG

method), 70
load() (machin.frame.algorithms.dqn.DQN method),

79
load() (machin.frame.algorithms.maddpg.MADDPG

method), 104
load() (machin.frame.algorithms.sac.SAC method), 92
load() (machin.frame.algorithms.td3.TD3 method), 76
load_config_cmd() (in module machin.utils.conf ),

128
load_config_file() (in module

machin.utils.conf ), 128
log() (machin.utils.logging.FakeLogger method), 130

M
machin.env.utils.openai_gym

module, 63
machin.env.wrappers.base

module, 63
machin.env.wrappers.openai_gym

module, 64
machin.frame.algorithms.a2c
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module, 84
machin.frame.algorithms.a3c

module, 87
machin.frame.algorithms.apex

module, 93
machin.frame.algorithms.base

module, 67
machin.frame.algorithms.ddpg

module, 68
machin.frame.algorithms.ddpg_per

module, 73
machin.frame.algorithms.dqn

module, 77
machin.frame.algorithms.dqn_per

module, 80
machin.frame.algorithms.hddpg

module, 71
machin.frame.algorithms.impala

module, 97
machin.frame.algorithms.maddpg

module, 100
machin.frame.algorithms.ppo

module, 89
machin.frame.algorithms.rainbow

module, 82
machin.frame.algorithms.sac

module, 90
machin.frame.algorithms.td3

module, 75
machin.frame.buffers.buffer

module, 105
machin.frame.buffers.buffer_d

module, 108
machin.frame.buffers.prioritized_buffer_d

module, 113
machin.frame.noise.action_space_noise

module, 115
machin.frame.noise.generator

module, 117
machin.frame.noise.param_space_noise

module, 119
machin.frame.transition

module, 122
machin.model.nets

module, 124
machin.parallel.assigner

module, 150
machin.parallel.distributed

module, 135
machin.parallel.pickle

module, 153
machin.parallel.pool

module, 154
machin.parallel.queue

module, 158
machin.parallel.server

module, 146
machin.utils.checker

module, 125
machin.utils.conf

module, 128
machin.utils.helper_classes

module, 129
machin.utils.learning_rate

module, 130
machin.utils.logging

module, 130
machin.utils.media

module, 131
machin.utils.prepare

module, 132
machin.utils.save_env

module, 133
machin.utils.tensor_board

module, 134
machin.utils.visualize

module, 134
MADDPG (class in machin.frame.algorithms.maddpg),

100
major_attr() (machin.frame.transition.TransitionBase

property), 123
make_tensor_from_batch()

(machin.frame.algorithms.maddpg.SHMBuffer
static method), 105

make_tensor_from_batch()
(machin.frame.buffers.buffer.Buffer static
method), 106

manage_model() (machin.parallel.server.PushPullGradServerImpl
method), 149

manual_sync() (machin.frame.algorithms.a3c.A3C
method), 88

manual_sync() (machin.frame.algorithms.apex.DDPGApex
method), 95

manual_sync() (machin.frame.algorithms.apex.DQNApex
method), 97

manual_sync() (machin.frame.algorithms.impala.IMPALA
method), 99

map() (machin.parallel.pool.CtxThreadPool method),
155

map() (machin.parallel.pool.Pool method), 157
map_async() (machin.parallel.pool.CtxThreadPool

method), 155
map_async() (machin.parallel.pool.Pool method), 157
mark_as_atom_module() (in module

machin.utils.checker), 127
mark_module_output() (in module

machin.utils.checker), 127
mark_static_module() (in module
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machin.parallel.pickle), 153
merge_config() (in module machin.utils.conf ), 128
ModelAssigner (class in machin.parallel.assigner),

150
ModelSizeEstimator (class in

machin.parallel.assigner), 152
module

machin.env.utils.openai_gym, 63
machin.env.wrappers.base, 63
machin.env.wrappers.openai_gym, 64
machin.frame.algorithms.a2c, 84
machin.frame.algorithms.a3c, 87
machin.frame.algorithms.apex, 93
machin.frame.algorithms.base, 67
machin.frame.algorithms.ddpg, 68
machin.frame.algorithms.ddpg_per, 73
machin.frame.algorithms.dqn, 77
machin.frame.algorithms.dqn_per, 80
machin.frame.algorithms.hddpg, 71
machin.frame.algorithms.impala, 97
machin.frame.algorithms.maddpg, 100
machin.frame.algorithms.ppo, 89
machin.frame.algorithms.rainbow, 82
machin.frame.algorithms.sac, 90
machin.frame.algorithms.td3, 75
machin.frame.buffers.buffer, 105
machin.frame.buffers.buffer_d, 108
machin.frame.buffers.prioritized_buffer_d,

113
machin.frame.noise.action_space_noise,

115
machin.frame.noise.generator, 117
machin.frame.noise.param_space_noise,

119
machin.frame.transition, 122
machin.model.nets, 124
machin.parallel.assigner, 150
machin.parallel.distributed, 135
machin.parallel.pickle, 153
machin.parallel.pool, 154
machin.parallel.queue, 158
machin.parallel.server, 146
machin.utils.checker, 125
machin.utils.conf, 128
machin.utils.helper_classes, 129
machin.utils.learning_rate, 130
machin.utils.logging, 130
machin.utils.media, 131
machin.utils.prepare, 132
machin.utils.save_env, 133
machin.utils.tensor_board, 134
machin.utils.visualize, 134

N
NeuralNetworkModule (class in

machin.model.nets), 124
next_state (machin.frame.transition.Transition at-

tribute), 122
NoiseGen (class in machin.frame.noise.generator), 117
NormalNoiseGen (class in

machin.frame.noise.generator), 118

O
o_chk_nan() (in module machin.utils.checker), 127
o_chk_range() (in module machin.utils.checker), 127
Object (class in machin.utils.helper_classes), 129
observation_space()

(machin.env.wrappers.base.ParallelWrapperBase
property), 64

observation_space()
(machin.env.wrappers.openai_gym.ParallelWrapperDummy
property), 65

observation_space()
(machin.env.wrappers.openai_gym.ParallelWrapperSubProc
property), 66

off() (machin.utils.helper_classes.Switch method), 129
on() (machin.utils.helper_classes.Switch method), 129
optimize_placement()

(machin.parallel.assigner.ModelAssigner
static method), 152

OrderedServerBase (class in
machin.parallel.server), 146

OrderedServerSimple (class in
machin.parallel.server), 146

OrderedServerSimpleImpl (class in
machin.parallel.server), 147

OrnsteinUhlenbeckNoiseGen (class in
machin.frame.noise.generator), 118

output_device() (machin.model.nets.NeuralNetworkModule
property), 124

P
P2PPool (class in machin.parallel.pool), 155
p_chk_nan() (in module machin.utils.checker), 127
p_chk_range() (in module machin.utils.checker), 127
pair() (machin.parallel.distributed.RpcGroup

method), 140
ParallelWrapperBase (class in

machin.env.wrappers.base), 63
ParallelWrapperDummy (class in

machin.env.wrappers.openai_gym), 64
ParallelWrapperSubProc (class in

machin.env.wrappers.openai_gym), 65
perturb_model() (in module

machin.frame.noise.param_space_noise),
119
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Pickler (class in machin.parallel.pickle), 153
policy_noise_function()

(machin.frame.algorithms.td3.TD3 static
method), 76

Pool (class in machin.parallel.pool), 156
post_process_batch()

(machin.frame.buffers.buffer.Buffer class
method), 106

PPO (class in machin.frame.algorithms.ppo), 89
prep_clear_dirs() (in module

machin.utils.prepare), 132
prep_create_dirs() (in module

machin.utils.prepare), 132
prep_load_model() (in module

machin.utils.prepare), 132
prep_load_state_dict() (in module

machin.utils.prepare), 133
print_weights() (machin.frame.buffers.prioritized_buffer.WeightTree

method), 113
PrioritizedBuffer (class in

machin.frame.buffers.prioritized_buffer),
110

proxy_caller() (in module machin.parallel.pool),
157

proxy_ctx_caller() (in module
machin.parallel.pool), 157

proxy_dumper() (in module machin.parallel.pool),
157

pull() (machin.parallel.server.OrderedServerBase
method), 146

pull() (machin.parallel.server.OrderedServerSimple
method), 146

pull() (machin.parallel.server.PushPullGradServer
method), 147

pull() (machin.parallel.server.PushPullModelServer
method), 149

push() (machin.parallel.server.OrderedServerBase
method), 146

push() (machin.parallel.server.OrderedServerSimple
method), 147

push() (machin.parallel.server.PushPullGradServer
method), 148

push() (machin.parallel.server.PushPullModelServer
method), 150

PushPullGradServer (class in
machin.parallel.server), 147

PushPullGradServerImpl (class in
machin.parallel.server), 148

PushPullModelServer (class in
machin.parallel.server), 149

PushPullModelServerImpl (class in
machin.parallel.server), 150

put() (machin.parallel.queue.SimpleQueue method),
158

Q
quick_get() (machin.parallel.queue.SimpleQueue

method), 158
quick_put() (machin.parallel.queue.SimpleQueue

method), 158

R
RAINBOW (class in machin.frame.algorithms.rainbow),

82
recv() (machin.parallel.distributed.CollectiveGroup

method), 138
reduce() (machin.parallel.distributed.CollectiveGroup

method), 139
REDUCE_MASTER (machin.parallel.server.PushPullGradServerImpl

attribute), 149
reduce_multigpu()

(machin.parallel.distributed.CollectiveGroup
method), 139

REDUCE_SLAVE (machin.parallel.server.PushPullGradServerImpl
attribute), 149

register() (machin.parallel.distributed.RpcGroup
method), 140

registered_async()
(machin.parallel.distributed.RpcGroup
method), 140

registered_remote()
(machin.parallel.distributed.RpcGroup
method), 141

registered_sync()
(machin.parallel.distributed.RpcGroup
method), 141

remote() (machin.parallel.distributed.RpcGroup
method), 141

remove_trials_older_than()
(machin.utils.save_env.SaveEnv method),
134

render() (machin.env.wrappers.base.ParallelWrapperBase
method), 64

render() (machin.env.wrappers.openai_gym.ParallelWrapperDummy
method), 65

render() (machin.env.wrappers.openai_gym.ParallelWrapperSubProc
method), 66

reset() (machin.env.wrappers.base.ParallelWrapperBase
method), 63

reset() (machin.env.wrappers.openai_gym.ParallelWrapperDummy
method), 64

reset() (machin.env.wrappers.openai_gym.ParallelWrapperSubProc
method), 65

reset() (machin.frame.noise.generator.NoiseGen
method), 117

reset() (machin.frame.noise.generator.OrnsteinUhlenbeckNoiseGen
method), 118

reset() (machin.utils.helper_classes.Counter
method), 129
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ResNet (class in machin.model.nets), 125
reward (machin.frame.transition.Transition attribute),

122
reward_function()

(machin.frame.algorithms.ddpg.DDPG static
method), 71

reward_function()
(machin.frame.algorithms.dqn.DQN static
method), 79

reward_function()
(machin.frame.algorithms.maddpg.MADDPG
static method), 104

reward_function()
(machin.frame.algorithms.sac.SAC static
method), 92

rpc_async() (machin.parallel.distributed.RpcGroup
method), 143

rpc_sync() (machin.parallel.distributed.RpcGroup
method), 144

RpcGroup (class in machin.parallel.distributed), 140

S
SAC (class in machin.frame.algorithms.sac), 90
sample_batch() (machin.frame.buffers.buffer.Buffer

method), 106
sample_batch() (machin.frame.buffers.buffer_d.DistributedBuffer

method), 109
sample_batch() (machin.frame.buffers.prioritized_buffer.PrioritizedBuffer

method), 111
sample_batch() (machin.frame.buffers.prioritized_buffer_d.DistributedPrioritizedBuffer

method), 114
sample_method_all()

(machin.frame.buffers.buffer.Buffer static
method), 107

sample_method_random()
(machin.frame.buffers.buffer.Buffer static
method), 107

sample_method_random_unique()
(machin.frame.buffers.buffer.Buffer static
method), 108

save() (machin.frame.algorithms.base.TorchFramework
method), 67

save_config() (in module machin.utils.conf ), 129
SaveEnv (class in machin.utils.save_env), 133
scatter() (machin.parallel.distributed.CollectiveGroup

method), 139
seed() (machin.env.wrappers.base.ParallelWrapperBase

method), 63
seed() (machin.env.wrappers.openai_gym.ParallelWrapperDummy

method), 65
seed() (machin.env.wrappers.openai_gym.ParallelWrapperSubProc

method), 66
send() (machin.parallel.distributed.CollectiveGroup

method), 139

set_input_module()
(machin.model.nets.NeuralNetworkModule
method), 124

set_output_module()
(machin.model.nets.NeuralNetworkModule
method), 124

set_sync() (machin.frame.algorithms.a3c.A3C
method), 88

set_sync() (machin.frame.algorithms.apex.DDPGApex
method), 95

set_sync() (machin.frame.algorithms.apex.DQNApex
method), 97

set_sync() (machin.frame.algorithms.impala.IMPALA
method), 99

setLevel() (machin.utils.logging.FakeLogger
method), 131

SHMBuffer (class in
machin.frame.algorithms.maddpg), 104

show_image() (in module machin.utils.media), 132
SimpleQueue (class in machin.parallel.queue), 158
size() (machin.env.wrappers.base.ParallelWrapperBase

method), 64
size() (machin.env.wrappers.openai_gym.ParallelWrapperDummy

method), 65
size() (machin.env.wrappers.openai_gym.ParallelWrapperSubProc

method), 66
size() (machin.frame.buffers.buffer.Buffer method),

108
size() (machin.frame.buffers.buffer_d.DistributedBuffer

method), 110
size() (machin.frame.buffers.prioritized_buffer.PrioritizedBuffer

method), 111
size() (machin.frame.buffers.prioritized_buffer_d.DistributedPrioritizedBuffer

method), 115
size() (machin.parallel.distributed.CollectiveGroup

method), 140
size() (machin.parallel.distributed.RpcGroup

method), 145
size() (machin.parallel.pool.Pool method), 157
size() (machin.parallel.pool.ThreadPool method), 157
starmap() (machin.parallel.pool.CtxThreadPool

method), 155
starmap() (machin.parallel.pool.Pool method), 157
starmap_async() (machin.parallel.pool.CtxThreadPool

method), 155
starmap_async() (machin.parallel.pool.Pool

method), 157
start() (machin.parallel.server.PushPullGradServerImpl

method), 149
state (machin.frame.transition.Transition attribute),

122
state_concat_function()

(machin.frame.algorithms.maddpg.MADDPG
static method), 104
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static_module_wrapper() (in module
machin.model.nets), 125

step() (machin.env.wrappers.base.ParallelWrapperBase
method), 63

step() (machin.env.wrappers.openai_gym.ParallelWrapperDummy
method), 64

step() (machin.env.wrappers.openai_gym.ParallelWrapperSubProc
method), 66

stop() (machin.parallel.server.PushPullGradServerImpl
method), 149

storage (machin.parallel.pool.CtxPoolStorage at-
tribute), 155

store() (machin.frame.transition.TransitionStorageBasic
method), 123

store() (machin.frame.transition.TransitionStorageSmart
method), 124

store_episode() (machin.frame.algorithms.a2c.A2C
method), 87

store_episode() (machin.frame.algorithms.ddpg.DDPG
method), 71

store_episode() (machin.frame.algorithms.dqn.DQN
method), 79

store_episode() (machin.frame.algorithms.impala.IMPALA
method), 99

store_episode() (machin.frame.algorithms.rainbow.RAINBOW
method), 84

store_episode() (machin.frame.algorithms.sac.SAC
method), 92

store_episodes() (machin.frame.algorithms.maddpg.MADDPG
method), 104

store_transition()
(machin.frame.algorithms.a2c.A2C method),
87

store_transition()
(machin.frame.algorithms.ddpg.DDPG
method), 71

store_transition()
(machin.frame.algorithms.dqn.DQN method),
79

store_transition()
(machin.frame.algorithms.impala.IMPALA
method), 99

store_transition()
(machin.frame.algorithms.rainbow.RAINBOW
method), 84

store_transition()
(machin.frame.algorithms.sac.SAC method), 92

store_transitions()
(machin.frame.algorithms.maddpg.MADDPG
method), 104

sub_attr() (machin.frame.transition.TransitionBase
property), 123

Switch (class in machin.utils.helper_classes), 129

T
TD3 (class in machin.frame.algorithms.td3), 75
TensorBoard (class in machin.utils.tensor_board),

134
terminal (machin.frame.transition.Transition at-

tribute), 122
ThreadPool (class in machin.parallel.pool), 157
Timer (class in machin.utils.helper_classes), 129
to() (machin.frame.transition.TransitionBase method),

123
TorchFramework (class in

machin.frame.algorithms.base), 67
training (machin.model.nets.NeuralNetworkModule

attribute), 124
training (machin.model.nets.ResNet attribute), 125
Transition (class in machin.frame.transition), 122
TransitionBase (class in machin.frame.transition),

122
TransitionStorageBasic (class in

machin.frame.transition), 123
TransitionStorageSmart (class in

machin.frame.transition), 123
Trigger (class in machin.utils.helper_classes), 130

U
UniformNoiseGen (class in

machin.frame.noise.generator), 118
unpair() (machin.parallel.distributed.RpcGroup

method), 145
update() (machin.frame.algorithms.a2c.A2C method),

87
update() (machin.frame.algorithms.a3c.A3C method),

88
update() (machin.frame.algorithms.apex.DDPGApex

method), 95
update() (machin.frame.algorithms.apex.DQNApex

method), 97
update() (machin.frame.algorithms.ddpg.DDPG

method), 71
update() (machin.frame.algorithms.ddpg_per.DDPGPer

method), 74
update() (machin.frame.algorithms.dqn.DQN

method), 79
update() (machin.frame.algorithms.dqn_per.DQNPer

method), 82
update() (machin.frame.algorithms.hddpg.HDDPG

method), 72
update() (machin.frame.algorithms.impala.IMPALA

method), 100
update() (machin.frame.algorithms.maddpg.MADDPG

method), 104
update() (machin.frame.algorithms.ppo.PPO

method), 90
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update() (machin.frame.algorithms.rainbow.RAINBOW
method), 84

update() (machin.frame.algorithms.sac.SAC method),
92

update() (machin.frame.algorithms.td3.TD3 method),
76

update_all_leaves()
(machin.frame.buffers.prioritized_buffer.WeightTree
method), 113

update_leaf() (machin.frame.buffers.prioritized_buffer.WeightTree
method), 113

update_leaf_batch()
(machin.frame.buffers.prioritized_buffer.WeightTree
method), 113

update_lr_scheduler()
(machin.frame.algorithms.a2c.A2C method),
87

update_lr_scheduler()
(machin.frame.algorithms.ddpg.DDPG
method), 71

update_lr_scheduler()
(machin.frame.algorithms.dqn.DQN method),
80

update_lr_scheduler()
(machin.frame.algorithms.impala.IMPALA
method), 100

update_lr_scheduler()
(machin.frame.algorithms.maddpg.MADDPG
method), 104

update_lr_scheduler()
(machin.frame.algorithms.sac.SAC method), 92

update_lr_scheduler()
(machin.frame.algorithms.td3.TD3 method), 76

update_priority()
(machin.frame.buffers.prioritized_buffer.PrioritizedBuffer
method), 111

update_priority()
(machin.frame.buffers.prioritized_buffer_d.DistributedPrioritizedBuffer
method), 115

V
visualize_graph() (in module

machin.utils.visualize), 134
visualize_model()

(machin.frame.algorithms.base.TorchFramework
method), 67

W
warn() (machin.utils.logging.FakeLogger method), 131
warning() (machin.utils.logging.FakeLogger method),

131
watch() (machin.parallel.server.PushPullGradServerImpl

method), 149

WeightTree (class in
machin.frame.buffers.prioritized_buffer),
112

World() (in module machin.parallel.distributed), 145
writer (machin.utils.tensor_board.TensorBoard

attribute), 134
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